000 03615nam a22004095i 4500
001 298853
003 MX-SnUAN
005 20170705134244.0
007 cr nn 008mamaa
008 150903s2009 gw | o |||| 0|eng d
020 _a9783540856382
_99783540856382
024 7 _a10.1007/9783540856382
_2doi
035 _avtls000352091
039 9 _a201509030933
_bVLOAD
_c201405060300
_dVLOAD
_y201402171152
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTA329-348
100 1 _aDelimata, Pawel.
_eautor
_9335463
245 1 0 _aInhibitory Rules in Data Analysis :
_bA Rough Set Approach /
_cby Pawel Delimata, Mikhail Ju. Moshkov, Andrzej Skowron, Zbigniew Suraj.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aStudies in Computational Intelligence,
_x1860-949X ;
_v163
500 _aSpringer eBooks
505 0 _aMaximal Consistent Extensions of Information Systems -- Minimal Inhibitory Association Rules for Almost All k-Valued Information Systems -- Partial Covers and Inhibitory Decision Rules -- Partial Covers and Inhibitory Decision Rules with Weights -- Classifiers Based on Deterministic and Inhibitory Decision Rules -- Lazy Classification Algorithms Based on Deterministic and Inhibitory Association Rules -- Lazy Classification Algorithms Based on Deterministic and Inhibitory Decision Rules -- Final Remarks.
520 _aThis monograph is devoted to theoretical and experimental study of inhibitory decision and association rules. Inhibitory rules contain on the right-hand side a relation of the kind "attribut does not equal value". The use of inhibitory rules instead of deterministic (standard) ones allows us to describe more completely information encoded in decision or information systems and to design classifiers of high quality. The most important feature of this monograph is that it includes an advanced mathematical analysis of problems on inhibitory rules. We consider algorithms for construction of inhibitory rules, bounds on minimal complexity of inhibitory rules, and algorithms for construction of the set of all minimal inhibitory rules.We also discuss results of experiments with standard and lazy classifiers based on inhibitory rules. These results show that inhibitory decision and association rules can be used in data mining and knowledge discovery both for knowledge representation and for prediction. Inhibitory rules can be also used under the analysis and design of concurrent systems. The results obtained in the monograph can be useful for researchers in such areas as machine learning, data mining and knowledge discovery, especially for those who are working in rough set theory, test theory, and logical analysis of data (LAD). The monograph can be used under the creation of courses for graduate students and for Ph.D. studies.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMoshkov, Mikhail Ju.
_eautor
_9335464
700 1 _aSkowron, Andrzej.
_eautor
_9325942
700 1 _aSuraj, Zbigniew.
_eautor
_9335465
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540856375
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-85638-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c298853
_d298853