000 03514nam a22003855i 4500
001 298875
003 MX-SnUAN
005 20170705134244.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783540788591
_99783540788591
024 7 _a10.1007/9783540788591
_2doi
035 _avtls000351743
039 9 _a201509030930
_bVLOAD
_c201405060255
_dVLOAD
_y201402171144
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA273.A1-274.9
100 1 _aSchneider, Rolf.
_eautor
_9331725
245 1 0 _aStochastic and Integral Geometry /
_cby Rolf Schneider, Wolfgang Weil.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProbability and Its Applications,
_x1431-7028
500 _aSpringer eBooks
505 0 _aFoundations of Stochastic Geometry -- Prolog -- Random Closed Sets -- Point Processes -- Geometric Models -- Integral Geometry -- Averaging with Invariant Measures -- Extended Concepts of Integral Geometry -- Integral Geometric Transformations -- Selected Topics from Stochastic Geometry -- Some Geometric Probability Problems -- Mean Values for Random Sets -- Random Mosaics -- Non-stationary Models -- Facts from General Topology -- Invariant Measures -- Facts from Convex Geometry.
520 _aStochastic geometry has in recent years experienced considerable progress, both in its applications to other sciences and engineering, and in its theoretical foundations and mathematical expansion. This book, by two eminent specialists of the subject, provides a solid mathematical treatment of the basic models of stochastic geometry -- random sets, point processes of geometric objects (particles, flats), and random mosaics. It develops, in a measure-theoretic setting, the integral geometry for the motion and the translation group, as needed for the investigation of these models under the usual invariance assumptions. A characteristic of the book is the interplay between stochastic and geometric arguments, leading to various major results. Its main theme, once the foundations have been laid, is the quantitative investigation of the basic models. This comprises the introduction of suitable parameters, in the form of functional densities, relations between them, and approaches to their estimation. Much additional information on stochastic geometry is collected in the section notes. As a combination of probability theory and geometry, the volume is intended for readers from either field. Probabilists with interest in random spatial structures, or motivated by the prospect of applications, will find an in-depth presentation of the geometric background. Geometers can see integral geometry "at work" and may be surprised to learn how classical results from convex geometry have elegant applications in a stochastic setting.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aWeil, Wolfgang.
_eautor
_9331726
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783540788584
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-540-78859-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c298875
_d298875