000 | 03080nam a22003855i 4500 | ||
---|---|---|---|
001 | 299602 | ||
003 | MX-SnUAN | ||
005 | 20160429155555.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2010 gw | o |||| 0|eng d | ||
020 |
_a9783642016424 _99783642016424 |
||
024 | 7 |
_a10.1007/9783642016424 _2doi |
|
035 | _avtls000353137 | ||
039 | 9 |
_a201509030522 _bVLOAD _c201405060315 _dVLOAD _y201402180937 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA174-183 | |
100 | 1 |
_aRibes, Luis. _eautor _9336621 |
|
245 | 1 | 0 |
_aProfinite Groups / _cby Luis Ribes, Pavel Zalesskii. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2010. |
|
300 |
_axiv, 483 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics ; _v40 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aInverse and Direct Limits -- Profinite Groups -- Free Profinite Groups -- Some Special Profinite Groups -- Discrete and Profinite Modules -- Homology and Cohomology of Profinite Groups -- Cohomological Dimension -- Normal Subgroups of Free Pro?-? Groups -- Free Constructions of Profinite Groups. | |
520 | _aThe aim of this book is to serve both as an introduction to profinite groups and as a reference for specialists in some areas of the theory. The book is reasonably self-contained. Profinite groups are Galois groups. As such they are of interest in algebraic number theory. Much of recent research on abstract infinite groups is related to profinite groups because residually finite groups are naturally embedded in a profinite group. In addition to basic facts about general profinite groups, the book emphasizes free constructions (particularly free profinite groups and the structure of their subgroups). Homology and cohomology is described with a minimum of prerequisites. This second edition contains three new appendices dealing with a new characterization of free profinite groups, presentations of pro-p groups and a new conceptually simpler approach to the proof of some classical subgroup theorems. Throughout the text there are additions in the form of new results, improved proofs, typographical corrections, and an enlarged bibliography. The list of open questions has been updated; comments and references have been added about those previously open problems that have been solved after the first edition appeared. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aZalesskii, Pavel. _eautor _9336622 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642016417 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-01642-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c299602 _d299602 |