000 04084nam a22003975i 4500
001 299839
003 MX-SnUAN
005 20160429155605.0
007 cr nn 008mamaa
008 150903s2009 gw | o |||| 0|eng d
020 _a9783642014925
_99783642014925
024 7 _a10.1007/9783642014925
_2doi
035 _avtls000353107
039 9 _a201509030518
_bVLOAD
_c201405060315
_dVLOAD
_y201402180936
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA8.9-QA10.3
100 1 _aDroste, Manfred.
_eeditor.
_9336974
245 1 0 _aHandbook of Weighted Automata /
_cedited by Manfred Droste, Werner Kuich, Heiko Vogler.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2009.
300 _axvii, 608 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aMonographs in Theoretical Computer Science. An EATCS Series,
_x1431-2654
500 _aSpringer eBooks
505 0 _aFoundations -- Semirings and Formal Power Series -- Fixed Point Theory -- Concepts of Weighted Recognizability -- Finite Automata -- Rational and Recognisable Power Series -- Weighted Automata and Weighted Logics -- Weighted Automata Algorithms -- Weighted Discrete Structures -- Algebraic Systems and Pushdown Automata -- Lindenmayer Systems -- Weighted Tree Automata and Tree Transducers -- Traces, Series-Parallel Posets, and Pictures: A Weighted Study -- Applications -- Digital Image Compression -- Fuzzy Languages -- Model Checking Linear-Time Properties of Probabilistic Systems -- Applications of Weighted Automata in Natural Language Processing.
520 _aWeighted finite automata are classical nondeterministic finite automata in which the transitions carry weights. These weights may model, for example, the cost involved when executing a transition, the resources or time needed for this, or the probability or reliability of its successful execution. Weights can also be added to classical automata with infinite state sets like pushdown automata, and this extension constitutes the general concept of weighted automata. Since their introduction in the 1960s they have stimulated research in related areas of theoretical computer science, including formal language theory, algebra, logic, and discrete structures. Moreover, weighted automata and weighted context-free grammars have found application in natural-language processing, speech recognition, and digital image compression. This book covers all the main aspects of weighted automata and formal power series methods, ranging from theory to applications. The contributors are the leading experts in their respective areas, and each chapter presents a detailed survey of the state of the art and pointers to future research. The chapters in Part I cover the foundations of the theory of weighted automata, specifically addressing semirings, power series, and fixed point theory. Part II investigates different concepts of weighted recognizability. Part III examines alternative types of weighted automata and various discrete structures other than words. Finally, Part IV deals with applications of weighted automata, including digital image compression, fuzzy languages, model checking, and natural-language processing. Computer scientists and mathematicians will find this book an excellent survey and reference volume, and it will also be a valuable resource for students exploring this exciting research area.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aKuich, Werner.
_eeditor.
_9336975
700 1 _aVogler, Heiko.
_eeditor.
_9336976
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642014918
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-01492-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c299839
_d299839