000 05274nam a22004095i 4500
001 300209
003 MX-SnUAN
005 20160429155619.0
007 cr nn 008mamaa
008 150903s2009 gw | o |||| 0|eng d
020 _a9783642039157
_99783642039157
024 7 _a10.1007/9783642039157
_2doi
035 _avtls000353772
039 9 _a201509030507
_bVLOAD
_c201405060325
_dVLOAD
_y201402181001
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA75.5-76.95
100 1 _aAdams, Niall M.
_eeditor.
_9337468
245 1 0 _aAdvances in Intelligent Data Analysis VIII :
_b8th International Symposium on Intelligent Data Analysis, IDA 2009, Lyon, France, August 31 - September 2, 2009. Proceedings /
_cedited by Niall M. Adams, Céline Robardet, Arno Siebes, Jean-François Boulicaut.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v5772
500 _aSpringer eBooks
505 0 _aInvited Papers -- Intelligent Data Analysis in the 21st Century -- Analyzing the Localization of Retail Stores with Complex Systems Tools -- Selected Contributions 1 (Long Talks) -- Change (Detection) You Can Believe in: Finding Distributional Shifts in Data Streams -- Exploiting Data Missingness in Bayesian Network Modeling -- DEMScale: Large Scale MDS Accounting for a Ridge Operator and Demographic Variables -- How to Control Clustering Results? Flexible Clustering Aggregation -- Compensation of Translational Displacement in Time Series Clustering Using Cross Correlation -- Context-Based Distance Learning for Categorical Data Clustering -- Semi-supervised Text Classification Using RBF Networks -- Improving k-NN for Human Cancer Classification Using the Gene Expression Profiles -- Subgroup Discovery for Test Selection: A Novel Approach and Its Application to Breast Cancer Diagnosis -- Trajectory Voting and Classification Based on Spatiotemporal Similarity in Moving Object Databases -- Leveraging Call Center Logs for Customer Behavior Prediction -- Condensed Representation of Sequential Patterns According to Frequency-Based Measures -- ART-Based Neural Networks for Multi-label Classification -- Two-Way Grouping by One-Way Topic Models -- Selecting and Weighting Data for Building Consensus Gene Regulatory Networks -- Incremental Bayesian Network Learning for Scalable Feature Selection -- Feature Extraction and Selection from Vibration Measurements for Structural Health Monitoring -- Zero-Inflated Boosted Ensembles for Rare Event Counts -- Selected Contributions 2 (Short Talks) -- Mining the Temporal Dimension of the Information Propagation -- Adaptive Learning from Evolving Data Streams -- An Application of Intelligent Data Analysis Techniques to a Large Software Engineering Dataset -- Which Distance for the Identification and the Differentiation of Cell-Cycle Expressed Genes? -- Ontology-Driven KDD Process Composition -- Mining Frequent Gradual Itemsets from Large Databases -- Selecting Computer Architectures by Means of Control-Flow-Graph Mining -- Visualization-Driven Structural and Statistical Analysis of Turbulent Flows -- Distributed Algorithm for Computing Formal Concepts Using Map-Reduce Framework -- Multi-Optimisation Consensus Clustering -- Improving Time Series Forecasting by Discovering Frequent Episodes in Sequences -- Measure of Similarity and Compactness in Competitive Space -- Bayesian Solutions to the Label Switching Problem -- Efficient Vertical Mining of Frequent Closures and Generators -- Isotonic Classification Trees.
520 _aThis book constitutes the refereed proceedings of the 8th International Conference on Intelligent Data Analysis, IDA 2009, held in Lyon, France, August 31 – September 2, 2009. The 33 revised papers, 18 full oral presentations and 15 poster and short oral presentations, presented were carefully reviewed and selected from almost 80 submissions. All current aspects of this interdisciplinary field are addressed; for example interactive tools to guide and support data analysis in complex scenarios, increasing availability of automatically collected data, tools that intelligently support and assist human analysts, how to control clustering results and isotonic classification trees. In general the areas covered include statistics, machine learning, data mining, classification and pattern recognition, clustering, applications, modeling, and interactive dynamic data visualization.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aRobardet, Céline.
_eeditor.
_9337469
700 1 _aSiebes, Arno.
_eeditor.
_9328750
700 1 _aBoulicaut, Jean-François.
_eeditor.
_9329894
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642039140
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-03915-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c300209
_d300209