000 03651nam a22003855i 4500
001 300257
003 MX-SnUAN
005 20160429155621.0
007 cr nn 008mamaa
008 150903s2010 gw | o |||| 0|eng d
020 _a9783642036392
_99783642036392
024 7 _a10.1007/9783642036392
_2doi
035 _avtls000353682
039 9 _a201509030516
_bVLOAD
_c201405060324
_dVLOAD
_y201402180959
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTK1-9971
100 1 _aPohl, Volker.
_eautor
_9337540
245 1 0 _aAdvanced Topics in System and Signal Theory :
_bA Mathematical Approach /
_cby Volker Pohl, Holger Boche.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _aviii, 241 páginas 5 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aFoundations in Signal Processing, Communications and Networking,
_x1863-8538 ;
_v4
500 _aSpringer eBooks
505 0 _aI Mathematical Preliminaries -- Function Spaces and Operators -- Fourier Analysis and Analytic Functions -- Banach Algebras -- Signal Models and Linear Systems -- II Fundamental Operators -- Poisson Integral and Hilbert Transformation -- Causal Projections -- III Causality Aspects in Signal and System Theory -- Disk Algebra Bases -- Causal Approximations -- On Algorithms for Calculating the Hilbert Transform -- Spectral Factorization.
520 _aThis book provides an in-depth analysis of selected methods in signal and system theory with applications to problems in communications, stochastic processes and optimal filter theory. The authors take a consistent functional analysis and operator theoretic approach to linear system theory, using Banach algebra and Hardy space techniques. The themes connecting all the chapters are questions concerning the consequences of the causality constraint, which is necessary in all realizable systems, and the question of robustness of linear systems with respect to errors in the data. The first part of the book contains basic background on the necessary mathematical tools and provides a basic foundation of signal and system theory. Emphasis is given to the close relation between properties of linear systems such as causality, time-invariance, and robustness on the one hand and the algebraic structures and analytic properties of the mathematical objects, such as Banach algebras or Hardy spaces, on the other hand. The requirement of causality in system theory is inevitably accompanied by the appearance of certain mathematical operations, namely the Riesz projection and the Hilbert transform. These operations are studied in detail in part two. Part three relates the mathematical techniques that are developed in the first two parts to the behaviour of linear systems that are of interest from an engineering perspective, such as expansions of transfer functions in orthonormal bases, the approximation from measured data and the numerical calculation of the Hilbert transform, as well as spectral factorization.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aBoche, Holger.
_eautor
_9331313
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642036385
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-03639-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c300257
_d300257