000 03855nam a22003855i 4500
001 300537
003 MX-SnUAN
005 20170705134251.0
007 cr nn 008mamaa
008 150903s2010 gw | o |||| 0|eng d
020 _a9783642024870
_99783642024870
024 7 _a10.1007/9783642024870
_2doi
035 _avtls000353361
039 9 _a201509030515
_bVLOAD
_c201405060319
_dVLOAD
_y201402180943
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQC750-766
100 1 _aKöbler, Ulrich.
_eautor
_9338034
245 1 0 _aRenormalization Group Theory :
_bImpact on Experimental Magnetism /
_cby Ulrich Köbler, Andreas Hoser.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Series in Materials Science,
_x0933-033X ;
_v127
500 _aSpringer eBooks
505 0 _aHistory of Conventional Spin Wave Theory -- Basic Issues of Renormalization Group (RG) Theory -- Universality -- Microscopic Processes -- Non-Relevant Magnons -- Crossover Phenomena -- Metastability of Universality Classes -- Relevant and Non-Relevant Interactions -- Temperature Dependence of the Magnon Excitation Spectra -- Magnetic Heat Capacity -- Experimental Verification of GSW Bosons -- Magnets With and Without Magnon Gap (Goldstone Mode) -- Microscopic Details: Spin Structure, Site Disorder, Two Order Parameters -- The Critical Magnetic Behaviour -- Thermal Lattice Expansion and Magnetostriction -- The Total Energy Content -- Superconductivity -- Conclusions.
520 _aSpin wave theory of magnetism and BCS theory of superconductivity are typical theories of the time before renormalization group (RG) theory. The two theories consider atomistic interactions only and ignore the energy degrees of freedom of the continuous (infinite) solid. Since the pioneering work of Kenneth G. Wilson (Nobel Prize of physics in 1982) we know that the continuous solid is characterized by a particular symmetry: invariance with respect to transformations of the length scale. Associated with this symmetry are particular field particles with characteristic excitation spectra. In diamagnetic solids these are the well known Debye bosons. This book reviews experimental work on solid state physics of the last five decades and shows in a phenomenological way that the dynamics of ordered magnets and conventional superconductors is controlled by the field particles of the infinite solid and not by magnons and Cooper pairs, respectively. In the case of ordered magnets the relevant field particles are called GSW bosons after Goldstone, Salam and Weinberg and in the case of superconductors the relevant field particles are called SC bosons. One can imagine these bosons as magnetic density waves or charge density waves, respectively. Crossover from atomistic exchange interactions to the excitations of the infinite solid occurs because the GSW bosons have generally lower excitation energies than the atomistic magnons. According to the principle of relevance the dynamics is governed by the excitations with the lowest energy. The non relevant atomistic interactions with higher energy are practically unimportant for the dynamics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHoser, Andreas.
_eautor
_9338035
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642024863
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-02487-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c300537
_d300537