000 | 03122nam a22004095i 4500 | ||
---|---|---|---|
001 | 300649 | ||
003 | MX-SnUAN | ||
005 | 20170705134251.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2010 gw | o |||| 0|eng d | ||
020 |
_a9783642025327 _99783642025327 |
||
024 | 7 |
_a10.1007/9783642025327 _2doi |
|
035 | _avtls000353370 | ||
039 | 9 |
_a201509030519 _bVLOAD _c201405060319 _dVLOAD _y201402180943 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQ334-342 | |
100 | 1 |
_aYeung, Daniel S. _eautor _9330306 |
|
245 | 1 | 0 |
_aSensitivity Analysis for Neural Networks / _cby Daniel S. Yeung, Ian Cloete, Daming Shi, Wing W. Y. Ng. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2010. |
|
300 |
_aviii, 86 páginas 24 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aNatural Computing Series, _x1619-7127 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _ato Neural Networks -- Principles of Sensitivity Analysis -- Hyper-Rectangle Model -- Sensitivity Analysis with Parameterized Activation Function -- Localized Generalization Error Model -- Critical Vector Learning for RBF Networks -- Sensitivity Analysis of Prior Knowledge1 -- Applications. | |
520 | _aArtificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aCloete, Ian. _eautor _9338184 |
|
700 | 1 |
_aShi, Daming. _eautor _9338185 |
|
700 | 1 |
_aNg, Wing W. Y. _eautor _9338186 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642025310 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-02532-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c300649 _d300649 |