000 03122nam a22004095i 4500
001 300649
003 MX-SnUAN
005 20170705134251.0
007 cr nn 008mamaa
008 150903s2010 gw | o |||| 0|eng d
020 _a9783642025327
_99783642025327
024 7 _a10.1007/9783642025327
_2doi
035 _avtls000353370
039 9 _a201509030519
_bVLOAD
_c201405060319
_dVLOAD
_y201402180943
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ334-342
100 1 _aYeung, Daniel S.
_eautor
_9330306
245 1 0 _aSensitivity Analysis for Neural Networks /
_cby Daniel S. Yeung, Ian Cloete, Daming Shi, Wing W. Y. Ng.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _aviii, 86 páginas 24 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aNatural Computing Series,
_x1619-7127
500 _aSpringer eBooks
505 0 _ato Neural Networks -- Principles of Sensitivity Analysis -- Hyper-Rectangle Model -- Sensitivity Analysis with Parameterized Activation Function -- Localized Generalization Error Model -- Critical Vector Learning for RBF Networks -- Sensitivity Analysis of Prior Knowledge1 -- Applications.
520 _aArtificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aCloete, Ian.
_eautor
_9338184
700 1 _aShi, Daming.
_eautor
_9338185
700 1 _aNg, Wing W. Y.
_eautor
_9338186
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642025310
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-02532-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c300649
_d300649