000 05793nam a22004335i 4500
001 300741
003 MX-SnUAN
005 20160429155641.0
007 cr nn 008mamaa
008 150903s2011 gw | o |||| 0|eng d
020 _a9783642153280
_99783642153280
024 7 _a10.1007/9783642153280
_2doi
035 _avtls000355685
039 9 _a201509031000
_bVLOAD
_c201405060353
_dVLOAD
_y201402191200
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ162
100 1 _aVöcking, Berthold.
_eeditor.
_9338318
245 1 0 _aAlgorithms Unplugged /
_cedited by Berthold Vöcking, Helmut Alt, Martin Dietzfelbinger, Rüdiger Reischuk, Christian Scheideler, Heribert Vollmer, Dorothea Wagner.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _ax, 406 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPart I – Searching and Sorting -- Overview -- 1 Binary Search -- 2 Insertion Sort -- 3 Fast Sorting Algorithms -- 4 Parallel Sorting – The Need for Speed -- 5 Topological Sorting – How Should I Begin to Complete My To Do List? -- 6 Searching Texts – But Fast! The Boyer—Moore—Horspool Algorithm -- 7 Depth-First Search (Ariadne & Co.) -- 8 Pledge's Algorithm – How to Escape from a Dark Maze -- 9 Cycles in Graphs -- 10 PageRank – What Is Really Relevant in the World-Wide Web? -- Part II – Arithmetic and Encryption -- Overview -- 11 Multiplication of Long Integers – Faster than Long Multiplication -- 12 The Euclidean Algorithm -- 13 The Sieve of Eratosthenes – How Fast Can We Compute a Prime Number Table? -- 14 One-Way Functions – Mind the Trap – Escape Only for the Initiated -- 15 The One-Time Pad Algorithm – The Simplest and Most Secure Way to Keep Secrets -- 16 Public-Key Cryptography -- 17 How to Share a Secret -- 18 Playing Poker by Email -- 19 Fingerprinting -- 20 Hashing -- 21 Codes – Protecting Data Against Errors and Loss -- Part III – Planning, Coordination and Simulation -- Overview -- 22 Broadcasting – How Can I Quickly Disseminate Information? -- 23 Coverting Numbers into English Words -- 24 Majority – Who Gets Elected Class Rep? -- 25 Random Numbers – How Can We Create Randomness in Computers? -- 26 Winning Strategies for a Matchstick Game -- 27 Scheduling of Tournaments or Sports Leagues -- 28 Eulerian Circuits -- 29 High-Speed Circles -- 30 Gauß—Seidel Iterative Method for the Computation of Physical Problems -- 31 Dynamic Programming – Evolutionary Distance -- Part IV – Optimisation -- Overview -- 32 Shortest Paths -- 33 Minimum Spanning Trees – Sometimes Greed Pays Off -- 34 Maximum Flows – Towards the Stadium During Rush Hour -- 35 Marriage Broker -- 36 The Smallest Enclosing Circle – A Contribution to Democracy from Switzerland? -- 37 Online Algorithms – What Is It Worth to Know the Future? -- 38 Bin Packing – How Do I Get My Stuff into the Boxes -- 39 The Knapsack Problem -- 40 The Travelling Salesman Problem -- 41 Simulated Annealing.
520 _aAlgorithms specify the way computers process information and how they execute tasks. Many recent technological innovations and achievements rely on algorithmic ideas – they facilitate new applications in science, medicine, production, logistics, traffic, communi¬cation and entertainment. Efficient algorithms not only enable your personal computer to execute the newest generation of games with features unimaginable only a few years ago, they are also key to several recent scientific breakthroughs – for example, the sequencing of the human genome would not have been possible without the invention of new algorithmic ideas that speed up computations by several orders of magnitude. The greatest improvements in the area of algorithms rely on beautiful ideas for tackling computational tasks more efficiently. The problems solved are not restricted to arithmetic tasks in a narrow sense but often relate to exciting questions of nonmathematical flavor, such as: How can I find the exit out of a maze? How can I partition a treasure map so that the treasure can only be found if all parts of the map are recombined? How should I plan my trip to minimize cost? Solving these challenging problems requires logical reasoning, geometric and combinatorial imagination, and, last but not least, creativity – the skills needed for the design and analysis of algorithms. In this book we present some of the most beautiful algorithmic ideas in 41 articles written in colloquial, nontechnical language. Most of the articles arose out of an initiative among German-language universities to communicate the fascination of algorithms and computer science to high-school students. The book can be understood without any prior knowledge of algorithms and computing, and it will be an enlightening and fun read for students and interested adults.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aAlt, Helmut.
_eeditor.
_9337382
700 1 _aDietzfelbinger, Martin.
_eeditor.
_9338319
700 1 _aReischuk, Rüdiger.
_eeditor.
_9329685
700 1 _aScheideler, Christian.
_eeditor.
_9333130
700 1 _aVollmer, Heribert.
_eeditor.
_9336860
700 1 _aWagner, Dorothea.
_eeditor.
_9332782
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642153273
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-15328-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c300741
_d300741