000 03829nam a22003855i 4500
001 300964
003 MX-SnUAN
005 20160429155651.0
007 cr nn 008mamaa
008 150903s2010 gw | o |||| 0|eng d
020 _a9783642051814
_99783642051814
024 7 _a10.1007/9783642051814
_2doi
035 _avtls000354101
039 9 _a201509030534
_bVLOAD
_c201405060330
_dVLOAD
_y201402181010
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ342
100 1 _aSigaud, Olivier.
_eeditor.
_9333008
245 1 0 _aFrom Motor Learning to Interaction Learning in Robots /
_cedited by Olivier Sigaud, Jan Peters.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aStudies in Computational Intelligence,
_x1860-949X ;
_v264
500 _aSpringer eBooks
505 0 _aFrom Motor Learning to Interaction Learning in Robots -- From Motor Learning to Interaction Learning in Robots -- I: Biologically Inspired Models for Motor Learning -- Distributed Adaptive Control: A Proposal on the Neuronal Organization of Adaptive Goal Oriented Behavior -- Proprioception and Imitation: On the Road to Agent Individuation -- Adaptive Optimal Feedback Control with Learned Internal Dynamics Models -- The SURE_REACH Model for Motor Learning and Control of a Redundant Arm: From Modeling Human Behavior to Applications in Robotics -- Intrinsically Motivated Exploration for Developmental and Active Sensorimotor Learning -- II: Learning Policies for Motor Control -- Learning to Exploit Proximal Force Sensing: A Comparison Approach -- Learning Forward Models for the Operational Space Control of Redundant Robots -- Real-Time Local GP Model Learning -- Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling -- A Bayesian View on Motor Control and Planning -- Methods for Learning Control Policies from Variable-Constraint Demonstrations -- Motor Learning at Intermediate Reynolds Number: Experiments with Policy Gradient on the Flapping Flight of a Rigid Wing -- III: Imitation and Interaction Learning -- Abstraction Levels for Robotic Imitation: Overview and Computational Approaches -- Learning to Imitate Human Actions through Eigenposes -- Incremental Learning of Full Body Motion Primitives -- Can We Learn Finite State Machine Robot Controllers from Interactive Demonstration? -- Mobile Robot Motion Control from Demonstration and Corrective Feedback -- Learning Continuous Grasp Affordances by Sensorimotor Exploration -- Multimodal Language Acquisition Based on Motor Learning and Interaction -- Human-Robot Cooperation Based on Interaction Learning.
520 _aFrom an engineering standpoint, the increasing complexity of robotic systems and the increasing demand for more autonomously learning robots, has become essential. This book is largely based on the successful workshop “From motor to interaction learning in robots” held at the IEEE/RSJ International Conference on Intelligent Robot Systems. The major aim of the book is to give students interested the topics described above a chance to get started faster and researchers a helpful compandium.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aPeters, Jan.
_eeditor.
_9327093
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642051807
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-05181-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c300964
_d300964