000 03306nam a22003855i 4500
001 301483
003 MX-SnUAN
005 20160429155711.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783642142000
_99783642142000
024 7 _a10.1007/9783642142000
_2doi
035 _avtls000355354
039 9 _a201509030954
_bVLOAD
_c201405060349
_dVLOAD
_y201402191041
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aHB135-147
100 1 _aCvitani?, Jakša.
_eautor
_9339356
245 1 0 _aContract Theory in Continuous-Time Models /
_cby Jakša Cvitani?, Jianfeng Zhang.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _axii, 255 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Finance,
_x1616-0533
500 _aSpringer eBooks
505 0 _aPreface -- PART I Introduction: 1.The Principal-Agent Problem -- 2.Single-Period Examples -- PART II First Best. Risk Sharing under Full Information: 3.Linear Models with Project Selection, and Preview of Results -- 4.The General Risk Sharing Problem -- PART III Second Best. Contracting Under Hidden Action- The Case of Moral Hazard: 5.The General Moral Hazard Problem -- 6.DeMarzo and Sannikov (2007), Biais et al (2007) – An Application to Capital Structure Problems: Optimal Financing of a Company -- PART IV Third Best. Contracting Under Hidden Action and Hidden Type – The Case of Moral Hazard and Adverse Selection: 7.Controlling the Drift -- 8.Controlling the Volatility-Drift Trade-Off with the First-Best -- PART IV Appendix: Backward SDEs and Forward-Backward SDEs -- 9.Introduction -- 10.Backward SDEs -- 11.Decoupled Forward Backward SDEs -- 12.Coupled Forward Backward SDEs -- References -- Index.
520 _aIn recent years there has been a significant increase of interest in continuous-time Principal-Agent models, or contract theory, and their applications. Continuous-time models provide a powerful and elegant framework for solving stochastic optimization problems of finding the optimal contracts between two parties, under various assumptions on the information they have access to, and the effect they have on the underlying "profit/loss" values. This monograph surveys recent results of the theory in a systematic way, using the approach of the so-called Stochastic Maximum Principle, in models driven by Brownian Motion. Optimal contracts are characterized via a system of Forward-Backward Stochastic Differential Equations. In a number of interesting special cases these can be solved explicitly, enabling derivation of many qualitative economic conclusions.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aZhang, Jianfeng.
_eautor
_9339357
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642141997
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-14200-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c301483
_d301483