000 03338nam a22003735i 4500
001 302612
003 MX-SnUAN
005 20160429155753.0
007 cr nn 008mamaa
008 150903s2011 gw | o |||| 0|eng d
020 _a9783642212987
_99783642212987
024 7 _a10.1007/9783642212987
_2doi
035 _avtls000357096
039 9 _a201509030540
_bVLOAD
_c201405070210
_dVLOAD
_y201402191308
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aJost, Jürgen.
_eautor
_9304435
245 1 0 _aRiemannian Geometry and Geometric Analysis /
_cby Jürgen Jost.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _axiii, 611 páginas 16 ilustraciones, 4 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext,
_x0172-5939
500 _aSpringer eBooks
505 0 _a1. Riemannian Manifolds -- 2. Lie Groups and Vector Bundles -- 3. The Laplace Operator and Harmonic Differential Forms -- 4. Connections and Curvature -- 5. Geodesics and Jacobi Fields -- 6. Symmetric Spaces and K¨ahler Manifolds -- 7. Morse Theory and Floer Homology -- 8. Harmonic Maps between Riemannian Manifolds -- 9. Harmonic Maps from Riemann Surfaces -- 10. Variational Problems from Quantum Field Theory -- A. Linear Elliptic Partial Differential Equations -- A.1 Sobolev Spaces -- A.2 Linear Elliptic Equations -- A.3 Linear Parabolic Equations -- B. Fundamental Groups and Covering Spaces -- Bibliography -- Index.
520 _aThis established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. The previous edition already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discussed further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. The 6th edition includes a systematic treatment of eigenvalues of Riemannian manifolds and several other additions. Also, the entire material has been reorganized in order to improve the coherence of the book. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. ... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome." Mathematical Reviews "...the material ... is self-contained. Each chapter ends with a set of exercises. Most of the paragraphs have a section ‘Perspectives’, written with the aim to place the material in a broader context and explain further results and directions." Zentralblatt MATH  
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642212970
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-21298-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c302612
_d302612