000 | 03338nam a22003735i 4500 | ||
---|---|---|---|
001 | 302612 | ||
003 | MX-SnUAN | ||
005 | 20160429155753.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 gw | o |||| 0|eng d | ||
020 |
_a9783642212987 _99783642212987 |
||
024 | 7 |
_a10.1007/9783642212987 _2doi |
|
035 | _avtls000357096 | ||
039 | 9 |
_a201509030540 _bVLOAD _c201405070210 _dVLOAD _y201402191308 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA641-670 | |
100 | 1 |
_aJost, Jürgen. _eautor _9304435 |
|
245 | 1 | 0 |
_aRiemannian Geometry and Geometric Analysis / _cby Jürgen Jost. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2011. |
|
300 |
_axiii, 611 páginas 16 ilustraciones, 4 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aUniversitext, _x0172-5939 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _a1. Riemannian Manifolds -- 2. Lie Groups and Vector Bundles -- 3. The Laplace Operator and Harmonic Differential Forms -- 4. Connections and Curvature -- 5. Geodesics and Jacobi Fields -- 6. Symmetric Spaces and K¨ahler Manifolds -- 7. Morse Theory and Floer Homology -- 8. Harmonic Maps between Riemannian Manifolds -- 9. Harmonic Maps from Riemann Surfaces -- 10. Variational Problems from Quantum Field Theory -- A. Linear Elliptic Partial Differential Equations -- A.1 Sobolev Spaces -- A.2 Linear Elliptic Equations -- A.3 Linear Parabolic Equations -- B. Fundamental Groups and Covering Spaces -- Bibliography -- Index. | |
520 | _aThis established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. The previous edition already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discussed further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. The 6th edition includes a systematic treatment of eigenvalues of Riemannian manifolds and several other additions. Also, the entire material has been reorganized in order to improve the coherence of the book. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. ... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome." Mathematical Reviews "...the material ... is self-contained. Each chapter ends with a set of exercises. Most of the paragraphs have a section ‘Perspectives’, written with the aim to place the material in a broader context and explain further results and directions." Zentralblatt MATH | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642212970 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-21298-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c302612 _d302612 |