000 | 03855nam a22003735i 4500 | ||
---|---|---|---|
001 | 303172 | ||
003 | MX-SnUAN | ||
005 | 20160429155813.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 gw | o |||| 0|eng d | ||
020 |
_a9783642173646 _99783642173646 |
||
024 | 7 |
_a10.1007/9783642173646 _2doi |
|
035 | _avtls000356200 | ||
039 | 9 |
_a201509030947 _bVLOAD _c201405060402 _dVLOAD _y201402191213 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA75.5-76.95 | |
100 | 1 |
_aJukna, Stasys. _eautor _9341697 |
|
245 | 1 | 0 |
_aExtremal Combinatorics : _bWith Applications in Computer Science / _cby Stasys Jukna. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2011. |
|
300 |
_axxiv, 308 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aTexts in Theoretical Computer Science. An EATCS Series, _x1862-4499 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Prolog: What this Book Is About -- Notation -- Counting -- Advanced Counting -- Probabilistic Counting -- The Pigeonhole Principle -- Systems of Distinct Representatives -- Sunflowers -- Intersecting Families -- Chains and Antichains -- Blocking Sets and the Duality -- Density and Universality -- Witness Sets and Isolation -- Designs -- The Basic Method -- Orthogonality and Rank Arguments -- Eigenvalues and Graph Expansion -- The Polynomial Method -- Combinatorics of Codes -- Linearity of Expectation -- The Lovász Sieve -- The Deletion Method -- The Second Moment Method -- The Entropy Function -- Random Walks -- Derandomization -- Ramseyan Theorems for Numbers -- The Hales–Jewett Theorem -- Applications in Communications Complexity -- References -- Index. | |
520 | _aThis book is a concise, self-contained, up-to-date introduction to extremal combinatorics for nonspecialists. There is a strong emphasis on theorems with particularly elegant and informative proofs, they may be called gems of the theory. The author presents a wide spectrum of the most powerful combinatorial tools together with impressive applications in computer science: methods of extremal set theory, the linear algebra method, the probabilistic method, and fragments of Ramsey theory. No special knowledge in combinatorics or computer science is assumed – the text is self-contained and the proofs can be enjoyed by undergraduate students in mathematics and computer science. Over 300 exercises of varying difficulty, and hints to their solution, complete the text. This second edition has been extended with substantial new material, and has been revised and updated throughout. It offers three new chapters on expander graphs and eigenvalues, the polynomial method and error-correcting codes. Most of the remaining chapters also include new material, such as the Kruskal—Katona theorem on shadows, the Lovász—Stein theorem on coverings, large cliques in dense graphs without induced 4-cycles, a new lower bounds argument for monotone formulas, Dvir's solution of the finite field Kakeya conjecture, Moser's algorithmic version of the Lovász Local Lemma, Schöning's algorithm for 3-SAT, the Szemerédi—Trotter theorem on the number of point-line incidences, surprising applications of expander graphs in extremal number theory, and some other new results. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642173639 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-17364-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c303172 _d303172 |