000 03855nam a22003735i 4500
001 303172
003 MX-SnUAN
005 20160429155813.0
007 cr nn 008mamaa
008 150903s2011 gw | o |||| 0|eng d
020 _a9783642173646
_99783642173646
024 7 _a10.1007/9783642173646
_2doi
035 _avtls000356200
039 9 _a201509030947
_bVLOAD
_c201405060402
_dVLOAD
_y201402191213
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA75.5-76.95
100 1 _aJukna, Stasys.
_eautor
_9341697
245 1 0 _aExtremal Combinatorics :
_bWith Applications in Computer Science /
_cby Stasys Jukna.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _axxiv, 308 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aTexts in Theoretical Computer Science. An EATCS Series,
_x1862-4499
500 _aSpringer eBooks
505 0 _aPreface -- Prolog: What this Book Is About -- Notation -- Counting -- Advanced Counting -- Probabilistic Counting -- The Pigeonhole Principle -- Systems of Distinct Representatives -- Sunflowers -- Intersecting Families -- Chains and Antichains -- Blocking Sets and the Duality -- Density and Universality -- Witness Sets and Isolation -- Designs -- The Basic Method -- Orthogonality and Rank Arguments -- Eigenvalues and Graph Expansion -- The Polynomial Method -- Combinatorics of Codes -- Linearity of Expectation -- The Lovász Sieve -- The Deletion Method -- The Second Moment Method -- The Entropy Function -- Random Walks -- Derandomization -- Ramseyan Theorems for Numbers -- The Hales–Jewett Theorem -- Applications in Communications Complexity -- References -- Index.
520 _aThis book is a concise, self-contained, up-to-date introduction to extremal combinatorics for nonspecialists. There is a strong emphasis on theorems with particularly elegant and informative proofs, they may be called gems of the theory. The author presents a wide spectrum of the most powerful combinatorial tools together with impressive applications in computer science: methods of extremal set theory, the linear algebra method, the probabilistic method, and fragments of Ramsey theory. No special knowledge in combinatorics or computer science is assumed – the text is self-contained and the proofs can be enjoyed by undergraduate students in mathematics and computer science. Over 300 exercises of varying difficulty, and hints to their solution, complete the text. This second edition has been extended with substantial new material, and has been revised and updated throughout. It offers three new chapters on expander graphs and eigenvalues, the polynomial method and error-correcting codes. Most of the remaining chapters also include new material, such as the Kruskal—Katona theorem on shadows, the Lovász—Stein theorem on coverings, large cliques in dense graphs without induced 4-cycles, a new lower bounds argument for monotone formulas, Dvir's solution of the finite field Kakeya conjecture, Moser's algorithmic version of the Lovász Local Lemma, Schöning's algorithm for 3-SAT, the Szemerédi—Trotter theorem on the number of point-line incidences, surprising applications of expander graphs in extremal number theory, and some other new results.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642173639
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-17364-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c303172
_d303172