000 | 03939nam a22003735i 4500 | ||
---|---|---|---|
001 | 303297 | ||
003 | MX-SnUAN | ||
005 | 20160429155817.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 gw | o |||| 0|eng d | ||
020 |
_a9783642161520 _99783642161520 |
||
024 | 7 |
_a10.1007/9783642161520 _2doi |
|
035 | _avtls000355928 | ||
039 | 9 |
_a201509030943 _bVLOAD _c201405060357 _dVLOAD _y201402191206 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA241-247.5 | |
100 | 1 |
_aKöhler, Günter. _eautor _9341834 |
|
245 | 1 | 0 |
_aEta Products and Theta Series Identities / _cby Günter Köhler. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2011. |
|
300 |
_axxii, 622 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Monographs in Mathematics, _x1439-7382 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- Part I: Theoretical background -- 1. Dedekind’s eta function and modular forms -- 2. Eta products -- 3. Eta products and lattice points in simplices -- 4. An algorithm for listing lattice points in a simplex -- 5. Theta series with Hecke character -- 6. Groups of coprime residues in quadratic fields -- Part II: Examples.-7. Ideal numbers for quadratic fields -- 8 Eta products of weight -- 9. Level 1: The full modular group -- 10. The prime level N = 2 -- 11. The prime level N = 3 -- 12. Prime levels N = p ? 5 -- 13. Level N = 4 -- 14. Levels N = p2 with primes p ? 3 -- 15 Levels N = p3 and p4 for primes p -- 16. Levels N = pq with primes 3 ? p < q -- 17. Weight 1 for levels N = 2p with primes p ? 5 -- 18. Level N = 6 -- 19. Weight 1 for prime power levels p5 and p6 -- 20. Levels p2q for distinct primes p = 2 and q -- 21. Levels 4p for the primes p = 23 and 19 -- 22. Levels 4p for p = 17 and 13 -- 23. Levels 4p for p = 11 and 7 -- 24. Weight 1 for level N = 20 -- 25. Cuspidal eta products of weight 1 for level 12 -- 26. Non-cuspidal eta products of weight 1 for level 12 -- 27. Weight 1 for Fricke groups ??(q3p) -- 28. Weight 1 for Fricke groups ??(2pq) -- 29. Weight 1 for Fricke groups ??(p2q2) -- 30. Weight 1 for the Fricke groups ??(60) and ??(84) -- 31. Some more levels 4pq with odd primes p _= q -- References -- Directory of Characters -- Index of Notations -- Index. | |
520 | _aThis monograph deals with products of Dedekind's eta function, with Hecke theta series on quadratic number fields, and with Eisenstein series. The author brings to the public the large number of identities that have been discovered over the past 20 years, the majority of which have not been published elsewhere. The book will be of interest to graduate students and scholars in the field of number theory and, in particular, modular forms. It is not an introductory text in this field. Nevertheless, some theoretical background material is presented that is important for understanding the examples in Part II. In Part I relevant definitions and essential theorems -- such as a complete proof of the structure theorems for coprime residue class groups in quadratic number fields that are not easily accessible in the literature -- are provided. Another example is a thorough description of an algorithm for listing all eta products of given weight and level, together with proofs of some results on the bijection between these eta products and lattice simplices. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642161513 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-16152-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c303297 _d303297 |