000 | 03262nam a22003855i 4500 | ||
---|---|---|---|
001 | 303308 | ||
003 | MX-SnUAN | ||
005 | 20160429155818.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2010 gw | o |||| 0|eng d | ||
020 |
_a9783642165337 _99783642165337 |
||
024 | 7 |
_a10.1007/9783642165337 _2doi |
|
035 | _avtls000356037 | ||
039 | 9 |
_a201509030945 _bVLOAD _c201405060359 _dVLOAD _y201402191209 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA76.9.A43 | |
100 | 1 |
_aFomin, Fedor V. _eautor _9331329 |
|
245 | 1 | 0 |
_aExact Exponential Algorithms / _cby Fedor V. Fomin, Dieter Kratsch. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2010. |
|
300 |
_axiv, 206 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aTexts in Theoretical Computer Science. An EATCS Series, _x1862-4499 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aBranching -- Dynamic Programming -- Inclusion-Exclusion -- Treewidth -- Measure & Conquer -- Subset Convolution -- Local Search and SAT -- Split and List -- Time Versus Space -- Miscellaneous -- Conclusions, Open Problems and Further Directions. | |
520 | _aToday most computer scientists believe that NP-hard problems cannot be solved by polynomial-time algorithms. From the polynomial-time perspective, all NP-complete problems are equivalent but their exponential-time properties vary widely. Why do some NP-hard problems appear to be easier than others? Are there algorithmic techniques for solving hard problems that are significantly faster than the exhaustive, brute-force methods? The algorithms that address these questions are known as exact exponential algorithms. The history of exact exponential algorithms for NP-hard problems dates back to the 1960s. The two classical examples are Bellman, Held and Karp’s dynamic programming algorithm for the traveling salesman problem and Ryser’s inclusion–exclusion formula for the permanent of a matrix. The design and analysis of exact algorithms leads to a better understanding of hard problems and initiates interesting new combinatorial and algorithmic challenges. The last decade has witnessed a rapid development of the area, with many new algorithmic techniques discovered. This has transformed exact algorithms into a very active research field. This book provides an introduction to the area and explains the most common algorithmic techniques, and the text is supported throughout with exercises and detailed notes for further reading. The book is intended for advanced students and researchers in computer science, operations research, optimization and combinatorics. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aKratsch, Dieter. _eautor _9329860 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642165320 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-16533-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c303308 _d303308 |