000 03018nam a22003975i 4500
001 303328
003 MX-SnUAN
005 20160429155818.0
007 cr nn 008mamaa
008 150903s2011 gw | o |||| 0|eng d
020 _a9783642179167
_99783642179167
024 7 _a10.1007/9783642179167
_2doi
035 _avtls000356351
039 9 _a201509030525
_bVLOAD
_c201405060404
_dVLOAD
_y201402191216
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ342
100 1 _aLim, Edward H. Y.
_eautor
_9341873
245 1 0 _aKnowledge Seeker - Ontology Modelling for Information Search and Management :
_bA Compendium /
_cby Edward H. Y. Lim, James N. K. Liu, Raymond S. T. Lee.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _axxvI, 237 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aIntelligent Systems Reference Library,
_x1868-4394 ;
_v8
500 _aSpringer eBooks
505 0 _aPart I Introduction -- Part II KnowledgeSeeker - An Ontology Modeling and Learning Framework -- Part III KnowledgeSeeker Applications.
520 _aThe KnowledgeSeeker is a useful system to develop various intelligent applications such as ontology-based search engine, ontology-based text classification system, ontological agent system, and semantic web system etc. The KnowledgeSeeker contains four different ontological components. First, it defines the knowledge representation model ¡V Ontology Graph. Second, an ontology learning process that based on chi-square statistics is proposed for automatic learning an Ontology Graph from texts for different domains. Third, it defines an ontology generation method that transforms the learning outcome to the Ontology Graph format for machine processing and also can be visualized for human validation. Fourth, it defines different ontological operations (such as similarity measurement and text classification) that can be carried out with the use of generated Ontology Graphs. The final goal of the KnowledgeSeeker system framework is that it can improve the traditional information system with higher efficiency. In particular, it can increase the accuracy of a text classification system, and also enhance the search intelligence in a search engine. This can be done by enhancing the system with machine processable ontology.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLiu, James N. K.
_eautor
_9319064
700 1 _aLee, Raymond S. T.
_eautor
_9327399
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642179150
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-17916-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c303328
_d303328