000 | 03564nam a22003855i 4500 | ||
---|---|---|---|
001 | 303412 | ||
003 | MX-SnUAN | ||
005 | 20160429155821.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 gw | o |||| 0|eng d | ||
020 |
_a9783642174131 _99783642174131 |
||
024 | 7 |
_a10.1007/9783642174131 _2doi |
|
035 | _avtls000356214 | ||
039 | 9 |
_a201509030947 _bVLOAD _c201405060402 _dVLOAD _y201402191213 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA564-609 | |
100 | 1 |
_aBobenko, Alexander I. _eeditor. _9341972 |
|
245 | 1 | 0 |
_aComputational Approach to Riemann Surfaces / _cedited by Alexander I. Bobenko, Christian Klein. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2011. |
|
300 |
_axii, 257 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2013 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction to Compact Riemann Surfaces -- Computing with plane algebraic curves and Riemann surfaces: the algorithms of the Maple package “algcurves” -- Algebraic curves and Riemann surfaces in Matlab -- Computing Poincaré Theta Series for Schottky Groups -- Uniformizing real hyperelliptic M-curves using the Schottky-Klein prime function -- Numerical Schottky Uniformizations: Myrberg’s Opening Process -- Period Matrices of Polyhedral Surfaces -- On the spectral theory of the Laplacian on compact polyhedral surfaces of arbitrary genus. | |
520 | _aThis volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aKlein, Christian. _eeditor. _9329783 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642174124 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-17413-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c303412 _d303412 |