000 03564nam a22003855i 4500
001 303412
003 MX-SnUAN
005 20160429155821.0
007 cr nn 008mamaa
008 150903s2011 gw | o |||| 0|eng d
020 _a9783642174131
_99783642174131
024 7 _a10.1007/9783642174131
_2doi
035 _avtls000356214
039 9 _a201509030947
_bVLOAD
_c201405060402
_dVLOAD
_y201402191213
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA564-609
100 1 _aBobenko, Alexander I.
_eeditor.
_9341972
245 1 0 _aComputational Approach to Riemann Surfaces /
_cedited by Alexander I. Bobenko, Christian Klein.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _axii, 257 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2013
500 _aSpringer eBooks
505 0 _aIntroduction to Compact Riemann Surfaces -- Computing with plane algebraic curves and Riemann surfaces: the algorithms of the Maple package “algcurves” -- Algebraic curves and Riemann surfaces in Matlab -- Computing Poincaré Theta Series for Schottky Groups -- Uniformizing real hyperelliptic M-curves using the Schottky-Klein prime function -- Numerical Schottky Uniformizations: Myrberg’s Opening Process -- Period Matrices of Polyhedral Surfaces -- On the spectral theory of the Laplacian on compact polyhedral surfaces of arbitrary genus.
520 _aThis volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aKlein, Christian.
_eeditor.
_9329783
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642174124
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-17413-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c303412
_d303412