000 03711nam a22003855i 4500
001 304151
003 MX-SnUAN
005 20160429155851.0
007 cr nn 008mamaa
008 150903s2011 gw | o |||| 0|eng d
020 _a9783642249426
_99783642249426
024 7 _a10.1007/9783642249426
_2doi
035 _avtls000358151
039 9 _a201509030547
_bVLOAD
_c201405070226
_dVLOAD
_y201402191515
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA75.5-76.95
100 1 _aRieser, Verena.
_eautor
_9342927
245 1 0 _aReinforcement Learning for Adaptive Dialogue Systems :
_bA Data-driven Methodology for Dialogue Management and Natural Language Generation /
_cby Verena Rieser, Oliver Lemon.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _axv, 253 páginas 50 ilustraciones, 27 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aTheory and Applications of Natural Language Processing
500 _aSpringer eBooks
505 0 _a1.Introduction -- 2.Background -- 3.Reinforcement Learning for Information Seeking dialogue strategies -- 4.The bootstrapping approach to developing Reinforcement Learning-based  strategies -- 5.Data Collection in aWizard-of-Oz experiment -- 6.Building a simulated learning environment from Wizard-of-Oz data -- 7.Comparing Reinforcement and Supervised Learning of dialogue policies with real users -- 8.Meta-evaluation -- 9.Adaptive Natural Language Generation -- 10.Conclusion -- References -- Example Dialogues -- A.1.Wizard-of-Oz Example Dialogues -- A.2.Example Dialogues from Simulated Interaction -- A.3.Example Dialogues from User Testing -- Learned State-Action Mappings -- Index.
520 _aThe past decade has seen a revolution in the field of spoken dialogue systems. As in other areas of Computer Science and Artificial Intelligence, data-driven methods are now being used to drive new methodologies for system development and evaluation. This book is a unique contribution to that ongoing change. A new  methodology for developing spoken dialogue systems is described in detail. The journey starts and ends with human behaviour in interaction, and explores methods for learning from the data, for building simulation environments for training and testing systems, and for evaluating the results. The detailed material covers: Spoken and Multimodal dialogue systems, Wizard-of-Oz data collection, User Simulation methods, Reinforcement Learning, and Evaluation methodologies. The book is a research guide for students and researchers with a background in Computer Science, AI, or Machine Learning. It navigates through a detailed case study in data-driven methods for development and evaluation of spoken dialogue systems. Common challenges associated with this approach are discussed and example solutions are provided. This work provides insights, lessons, and inspiration for future research and development – not only for spoken dialogue systems in particular, but for data-driven approaches to human-machine interaction in general.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLemon, Oliver.
_eautor
_9317324
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642249419
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-24942-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c304151
_d304151