000 03217nam a22003855i 4500
001 304458
003 MX-SnUAN
005 20160429155905.0
007 cr nn 008mamaa
008 150903s2011 gw | o |||| 0|eng d
020 _a9783642229138
_99783642229138
024 7 _a10.1007/9783642229138
_2doi
035 _avtls000357570
039 9 _a201509030559
_bVLOAD
_c201405070218
_dVLOAD
_y201402191318
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ342
100 1 _aBiba, Marenglen.
_eeditor.
_9343293
245 1 0 _aLearning Structure and Schemas from Documents /
_cedited by Marenglen Biba, Fatos Xhafa.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _axviii, 442 páginas 98 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aStudies in Computational Intelligence,
_x1860-949X ;
_v375
500 _aSpringer eBooks
505 0 _aFrom the content: Learning Structure and Schemas from Heterogeneous Domains in Networked Systems Surveyed -- Handling Hierarchically Structured Resources Addressing Interoperability Issues in Digital Libraries -- Administrative Document Analysis and Structure -- Automatic Document Layout Analysis through Relational Machine Learning -- Dataspaces: where structure and schema meet.
520 _aThe rapidly growing volume of available digital documents of various formats and the possibility to access these through Internet-based technologies, have led to the necessity to develop solid methods to properly organize and structure documents in large digital libraries and repositories. Due to the extremely large volumes of documents and to their unstructured form, most of the research efforts in this direction are dedicated to automatically infer structure and schemas that can help to better organize huge collections of documents and data.   This book covers the latest advances in structure inference in heterogeneous collections of documents and data. The book brings a comprehensive view of the state-of-the-art in the area, presents some lessons learned and identifies new research issues, challenges and opportunities for further research agenda and developments.  The selected chapters cover a broad range of research issues, from theoretical approaches to case studies and best practices in the field.   Researcher, software developers, practitioners and students interested in the field of learning structure and schemas from documents will find the comprehensive coverage of this book useful for their research, academic, development and practice activity.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aXhafa, Fatos.
_eeditor.
_9313917
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642229121
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-22913-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c304458
_d304458