000 | 03637nam a22003855i 4500 | ||
---|---|---|---|
001 | 304599 | ||
003 | MX-SnUAN | ||
005 | 20160429155911.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 gw | o |||| 0|eng d | ||
020 |
_a9783642236471 _99783642236471 |
||
024 | 7 |
_a10.1007/9783642236471 _2doi |
|
035 | _avtls000357811 | ||
039 | 9 |
_a201509030542 _bVLOAD _c201405070221 _dVLOAD _y201402191508 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA331.7 | |
100 | 1 |
_aNémethi, András. _eautor _9343484 |
|
245 | 1 | 0 |
_aMilnor Fiber Boundary of a Non-isolated Surface Singularity / _cby András Némethi, Ágnes Szilárd. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2012. |
|
300 |
_axii, 240 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2037 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _a1 Introduction -- 2 The topology of a hypersurface germ f in three variables Milnor fiber -- 3 The topology of a pair (f ; g) -- 4 Plumbing graphs and oriented plumbed 3-manifolds -- 5 Cyclic coverings of graphs -- 6 The graph GC of a pair (f ; g). The definition -- 7 The graph GC . Properties -- 8 Examples. Homogeneous singularities -- 9 Examples. Families associated with plane curve singularities -- 10 The Main Algorithm -- 11 Proof of the Main Algorithm -- 12 The Collapsing Main Algorithm -- 13 Vertical/horizontal monodromies -- 14 The algebraic monodromy of H1(¶ F). Starting point -- 15 The ranks of H1(¶ F) and H1(¶ F nVg) via plumbing -- 16 The characteristic polynomial of ¶ F via P# and P# -- 18 The mixed Hodge structure of H1(¶ F) -- 19 Homogeneous singularities -- 20 Cylinders of plane curve singularities: f = f 0(x;y) -- 21 Germs f of type z f 0(x;y) -- 22 The T;;–family -- 23 Germs f of type ˜ f (xayb; z). Suspensions -- 24 Peculiar structures on ¶ F. Topics for future research -- 25 List of examples -- 26 List of notations. | |
520 | _aIn the study of algebraic/analytic varieties a key aspect is the description of the invariants of their singularities. This book targets the challenging non-isolated case. Let f be a complex analytic hypersurface germ in three variables whose zero set has a 1-dimensional singular locus. We develop an explicit procedure and algorithm that describe the boundary M of the Milnor fiber of f as an oriented plumbed 3-manifold. This method also provides the characteristic polynomial of the algebraic monodromy. We then determine the multiplicity system of the open book decomposition of M cut out by the argument of g for any complex analytic germ g such that the pair (f,g) is an ICIS. Moreover, the horizontal and vertical monodromies of the transversal type singularities associated with the singular locus of f and of the ICIS (f,g) are also described. The theory is supported by a substantial amount of examples, including homogeneous and composed singularities and suspensions. The properties peculiar to M are also emphasized | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aSzilárd, Ágnes. _eautor _9343485 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642236464 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-23647-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c304599 _d304599 |