000 03961nam a22003855i 4500
001 304663
003 MX-SnUAN
005 20160429155913.0
007 cr nn 008mamaa
008 150903s2012 gw | o |||| 0|eng d
020 _a9783642226649
_99783642226649
024 7 _a10.1007/9783642226649
_2doi
035 _avtls000357497
039 9 _a201509030557
_bVLOAD
_c201405070217
_dVLOAD
_y201402191317
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aGhergu, Marius.
_eautor
_9343564
245 1 0 _aNonlinear PDEs :
_bMathematical Models in Biology, Chemistry and Population Genetics /
_cby Marius Ghergu, Vicen?iu D. R?dulescu.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2012.
300 _axviii, 394 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Monographs in Mathematics,
_x1439-7382
500 _aSpringer eBooks
505 0 _aViorel Barbu: Foreword -- 1.Overview of merhods in PDEs -- 2.Liouville Type Theorems for Elliptic Operators in Divergence Form -- 3.Blow-up Boundary Solutions -- 4.Singular Lane-Emden-Fowler Equations and Systems.- 5.Singular Elliptic Inequalities in Exterior Domains -- 6.Two Quasilinear Elliptic Problems -- 7.Some Classes of Polyharmonic Problems -- 8.Large Time Behavior of Solutions for Degenerate Parabolic Equations -- 9.Rection-Diffusion Systems in Chemistry -- 10.Pattern Formation and Gierer-Meinhardt Model -- Appendices -- References -- Index.    .
520 _aThe emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations  and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aR?dulescu, Vicen?iu D.
_eautor
_9343565
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642226632
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-22664-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c304663
_d304663