000 02133nam a22003855i 4500
001 304816
003 MX-SnUAN
005 20160429155920.0
007 cr nn 008mamaa
008 150903s2011 gw | o |||| 0|eng d
020 _a9783642217746
_99783642217746
024 7 _a10.1007/9783642217746
_2doi
035 _avtls000357239
039 9 _a201509030550
_bVLOAD
_c201405070212
_dVLOAD
_y201402191311
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA150-272
100 1 _aGillibert, Pierre.
_eautor
_9343752
245 1 0 _aFrom Objects to Diagrams for Ranges of Functors /
_cby Pierre Gillibert, Friedrich Wehrung.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aCLviii, 10 páginas 19 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2029
500 _aSpringer eBooks
505 0 _a1 Background -- 2 Boolean Algebras Scaled with Respect to a Poset -- 3 The Condensate Lifting Lemma (CLL) -- 4 Larders from First-order Structures -- 5 Congruence-Preserving Extensions -- 6 Larders from von Neumann Regular Rings -- 7 Discussion.
520 _aThis work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aWehrung, Friedrich.
_eautor
_9343753
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642217739
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-21774-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c304816
_d304816