000 03667nam a22003855i 4500
001 304934
003 MX-SnUAN
005 20170705134305.0
007 cr nn 008mamaa
008 150903s2012 gw | o |||| 0|eng d
020 _a9783642321191
_99783642321191
024 7 _a10.1007/9783642321191
_2doi
035 _avtls000359856
039 9 _a201509031005
_bVLOAD
_c201405070250
_dVLOAD
_y201402201420
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQC350-467
100 1 _aRose, Harald.
_eautor
_9343891
245 1 0 _aGeometrical Charged-Particle Optics /
_cby Harald Rose.
250 _a2nd ed. 2012.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2012.
300 _axviii, 507 páginas 173 ilustraciones, 36 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Series in Optical Sciences,
_x0342-4111 ;
_v142
500 _aSpringer eBooks
505 0 _aGeneral Properties of the Electron -- Multipole Expansion of the Electromagnetic Field -- Gaussian Optics -- General Principles of Particle Motion -- Beam Properties -- Path Deviations -- Aberrations -- Correction of Aberrations -- Electron Mirrors -- Optics of Electron Guns -- Confinement of Charged Particles -- Monochromator and Energy Filters -- Relativistic Electron Motion and Spin Precession -- Self-Action.
520 _aThis second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton’s principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern-Gerlach effect is revisited for atomic and free electrons.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642321184
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-32119-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c304934
_d304934