000 02283nam a22003855i 4500
001 305088
003 MX-SnUAN
005 20160429155934.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783642317125
_99783642317125
024 7 _a10.1007/9783642317125
_2doi
035 _avtls000359658
039 9 _a201509031005
_bVLOAD
_c201405070249
_dVLOAD
_y201402191559
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA150-272
100 1 _aFontana, Marco.
_eautor
_9313014
245 1 0 _aFactoring Ideals in Integral Domains /
_cby Marco Fontana, Evan Houston, Thomas Lucas.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aviii, 164 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes of the Unione Matematica Italiana,
_x1862-9113 ;
_v14
500 _aSpringer eBooks
520 _aThis volume provides a wide-ranging survey of, and many new results on, various important types of ideal factorization actively investigated by several authors in recent years.  Examples of domains studied include (1) those with weak factorization, in which each nonzero, nondivisorial ideal can be factored as the product of its divisorial closure and a product of maximal ideals and (2) those with pseudo-Dedekind factorization, in which each nonzero, noninvertible ideal can be factored as the product of an invertible ideal with a product of pairwise comaximal prime ideals.  Prüfer domains play a central role in our study, but many non-Prüfer examples are considered as well.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHouston, Evan.
_eautor
_9344077
700 1 _aLucas, Thomas.
_eautor
_9344078
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642317118
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-31712-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c305088
_d305088