000 06357nam a22003735i 4500
001 305411
003 MX-SnUAN
005 20170705134306.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783642312083
_99783642312083
024 7 _a10.1007/9783642312083
_2doi
035 _avtls000359508
039 9 _a201509030615
_bVLOAD
_c201405070247
_dVLOAD
_y201402191556
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQH323.5
100 1 _aCazals, Frédéric.
_eeditor.
_9344446
245 1 0 _aModeling in Computational Biology and Biomedicine :
_bA Multidisciplinary Endeavor /
_cedited by Frédéric Cazals, Pierre Kornprobst.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _axxvI, 315 páginas 85 ilustraciones, 65 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aForeword by Olivier Faugeras -- Foreword by Joël Janin -- Preface -- Part I Bioinformatics -- 1.Modeling Macro-molecular Complexes: a Journey Across Scales. F.Cazals, T.Dreyfus, and C.H. Robert -- 1.1.Introduction -- 1.2.Modeling Atomic Resolution -- 1.3.Modeling Large Assemblies -- 1.4.Outlook -- 1.5.Online Resources -- References -- 2.Modeling and Analysis of Gene Regulatory Networks. G.Bernot, J-P.Comet, A.Richard, M.Chaves, J-L.Gouzé, and F.Dayan -- 2.1.Introduction -- 2.2.Continuous and Hybrid Models of Genetic Regulatory Networks -- 2.3.Discrete Models of GRN -- 2.4.Outlook -- 2.5.Online Resources -- 2.6.Acknowledgments -- References -- Part II Biomedical Signal and Image Analysis -- 3.Noninvasive Cardiac Signal Analysis Using Data Decomposition Techniques. V.Zarzoso, O.Meste, P.Comon, D.G.Latcu, and N.Saoudi -- 3.1.Preliminaries and Motivation -- 3.2.T-Wave Alternans Detection via Principal Component Analysis -- 3.3.Atrial Activity Extraction via Independent Component Analysis -- 3.4.Conclusion and Outlook -- 3.5.Online Resources -- References -- 4.Deconvolution and Denoising for Confocal Microscopy. P.Pankajakshan, G.Engler, L.Blanc-Féraud, and J.Zerubia -- 4.1.Introduction -- 4.2.Development of the Auxiliary Computational Lens -- 4.3.Outlook -- 4.4.Selected Online Resources -- References -- 5.Statistical Shape Analysis of Surfaces in Medical Images Applied to the Tetralogy of Fallot Heart. K.McLeod, T.Mansi, M.Sermesant, G.Pongiglione, and X.Pennec -- 5.1.Introduction -- 5.2.Statistical Shape Analysis -- 5.3.Shape Analysis of ToF Data -- 5.4.Conclusion -- 5.5.Online Resources -- References -- 6.From Diffusion MRI to Brain Connectomics. A.Ghosh and R.Deriche -- 6.1.Introduction -- 6.2.A Brief History of NMR and MRI -- 6.3.Nuclear Magnetic Resonance and Diffusion -- 6.4.From Diffusion MRI to Tissue Microstructure -- 6.5.Computational Framework for Processing Diffusion MR Images -- 6.6.Tractography: Inferring the Connectivity -- 6.7.Clinical Applications 6.8.Conclusion -- 6.9.Online Resources -- References -- Part III Modeling in neuroscience -- 7.Single-Trial Analysis of Bioelectromagnetic Signals: The Quest for Hidden Information. M.Clerc, T.Papadopoulo, and C.Bénar -- 7.1.Introduction -- 7.2.Data-driven Approaches: Non-linear Dimensionality Reduction -- 7.3.Model-Driven Approaches: Matching Pursuit and its Extensions -- 7.4.Success Stories -- 7.5.Conclusion -- 7.6.Selected Online Resources -- References -- 8 Spike Train Statistics from Empirical Facts to Theory: The Case of the Retina. B.Cessac and A.Palacios -- 8.1.Introduction -- 8.2.Unraveling the Neural Code in the Retina via Spike Train Statistics Analysis -- 8.3.Spike Train Statistics from a Theoretical Perspective -- 8.4.Using Gibbs Distributions to Analysing Spike Trains Statistics -- 8.5.Conclusion -- 8.6.Outlook -- 8.7.Online Resources -- References -- Biology, Medicine and Biophysics -- Mathematics and Computer Science -- Index.
520 _aComputational biology, mathematical biology, biology and biomedicine are currently undergoing spectacular progresses due to a synergy between technological advances and inputs from physics, chemistry, mathematics, statistics and computer science. The goal of this book is to evidence this synergy by describing selected developments in the following fields: bioinformatics, biomedicine and neuroscience. This work is unique in two respects - first, by the variety and scales of systems studied and second, by its presentation: Each chapter provides the biological or medical context, follows up with mathematical or algorithmic developments triggered by a specific problem and concludes with one or two success stories, namely new insights gained thanks to these methodological developments. It also highlights some unsolved and outstanding theoretical questions, with a potentially high impact on these disciplines.   Two communities will be particularly interested in this book. The first one is the vast community of applied mathematicians and computer scientists, whose interests should be captured by the added value generated by the application of advanced concepts and algorithms to challenging biological or medical problems. The second is the equally vast community of biologists. Whether scientists or engineers, they will find in this book a clear and self-contained account of concepts and techniques from mathematics and computer science, together with success stories on their favorite systems. The variety of systems described represents a panoply of complementary conceptual tools. On a practical level, the resources listed at the end of each chapter (databases, software) offer invaluable support for getting started on a specific topic in the fields of biomedicine, bioinformatics and neuroscience.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aKornprobst, Pierre.
_eeditor.
_9304792
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642312076
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-31208-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c305411
_d305411