000 03025nam a22003855i 4500
001 305841
003 MX-SnUAN
005 20160429160009.0
007 cr nn 008mamaa
008 150903s2012 gw | o |||| 0|eng d
020 _a9783642282850
_99783642282850
024 7 _a10.1007/9783642282850
_2doi
035 _avtls000358715
039 9 _a201509031016
_bVLOAD
_c201405070235
_dVLOAD
_y201402191539
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aFavini, Angelo.
_eautor
_9344969
245 1 0 _aDegenerate Nonlinear Diffusion Equations /
_cby Angelo Favini, Gabriela Marinoschi.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2012.
300 _axxI, 143 páginas 12 ilustraciones, 9 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2049
500 _aSpringer eBooks
505 0 _a1 Parameter identification in a parabolic-elliptic degenerate problem -- 2 Existence for diffusion degenerate problems -- 3 Existence for nonautonomous parabolic-elliptic degenerate diffusion Equations -- 4 Parameter identification in a parabolic-elliptic degenerate problem.
520 _aThe aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asymptotic behaviour, discretization schemes, coefficient identification, and to introduce relevant solving methods for each of them.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMarinoschi, Gabriela.
_eautor
_9308660
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642282843
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-28285-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c305841
_d305841