000 03627nam a22003975i 4500
001 306148
003 MX-SnUAN
005 20160429160021.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783642275555
_99783642275555
024 7 _a10.1007/9783642275555
_2doi
035 _avtls000358540
039 9 _a201509030607
_bVLOAD
_c201405070232
_dVLOAD
_y201402191523
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA372
100 1 _aLamour, René.
_eautor
_9345341
245 1 0 _aDifferential-Algebraic Equations: A Projector Based Analysis /
_cby René Lamour, Roswitha März, Caren Tischendorf.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _axxvii, 649 páginas 24 ilustraciones, 19 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aDifferential-Algebraic Equations Forum
500 _aSpringer eBooks
505 0 _aNotations -- Introduction -- Part I. Projector based approach -- 1 Linear constant coefficient DAEs.-.2 Linear DAEs with variable coefficients -- 3 Nonlinear DAEs -- Part II. Index-1 DAEs: Analysis and numerical treatment -- 4 Analysis -- 5 Numerical integration -- 6 Stability issues -- Part III. Computational aspects -- 7 Computational linear algebra aspects -- 8 Aspects of the numerical treatment of higher index DAEs -- Part IV. Advanced topics -- 9 Quasi-regular DAEs -- 10 Nonregular DAEs -- 11 Minimization with constraints described by DAEs -- 12 Abstract differential algebraic equations -- A. Linear Algebra – Basics.-.B. Technical Computations -- C Analysis -- References -- Index.
520 _aDifferential algebraic equations (DAEs), including so-called descriptor systems, began to attract significant research interest in applied and numerical mathematics in the early 1980s, no more than about three decades ago. In this relatively short time, DAEs have become a widely acknowledged tool to model processes subjected to certain constraints in order to simulate and to control processes in various application fields such as network simulation, chemical kinematics, mechanical engineering and systems biology. DAEs and their more abstract versions in infinite dimensional spaces comprise a great potential for the future mathematical modeling of complex coupled processes. The purpose of the book is to expose the impressive complexity of general DAEs from an analytical point of view, to describe the state of the art as well as open problems and in so doing to motivate further research of this versatile, extraordinary topic from a broader mathematical perspective. The book elaborates on a new general, structural analysis capturing linear and nonlinear DAEs in a hierarchical way. The DAE structure is exposed by means of special projector functions. Some issues on numerical integration and computational aspects are also treated in this context.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMärz, Roswitha.
_eautor
_9345342
700 1 _aTischendorf, Caren.
_eautor
_9345343
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642275548
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-27555-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c306148
_d306148