000 03123nam a22003735i 4500
001 306189
003 MX-SnUAN
005 20160429160023.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783642343698
_99783642343698
024 7 _a10.1007/9783642343698
_2doi
035 _avtls000360495
039 9 _a201509030605
_bVLOAD
_c201405070300
_dVLOAD
_y201402201433
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA319-329.9
100 1 _aStørmer, Erling.
_eautor
_9330691
245 1 0 _aPositive Linear Maps of Operator Algebras /
_cby Erling Størmer.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aviii, 134 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Monographs in Mathematics,
_x1439-7382
500 _aSpringer eBooks
505 0 _aIntroduction -- 1 Generalities for positive maps -- 2 Jordan algebras and projection maps -- 3 Extremal positive maps -- 4 Choi matrices and dual functionals -- 5 Mapping cones -- 6 Dual cones -- 7 States and positive maps -- 8 Norms of positive maps -- Appendix: A.1 Topologies on B(H) -- A.2 Tensor products -- A.3 An extension theorem -- Bibliography -- Index .
520 _aThis volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps.  The text examines the maps’ positivity properties, as well as their associated linear functionals together with their density operators. It features special sections on extremal positive maps and Choi matrices. In sum, this is a vital publication that covers a full spectrum of matters relating to positive linear maps, of which a large proportion is relevant and applicable to today’s quantum information theory. The latter sections of the book present the material in finite dimensions, while the text as a whole appeals to a wider and more general readership by keeping the mathematics as elementary as possible throughout.  
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642343681
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-34369-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c306189
_d306189