000 | 03123nam a22003735i 4500 | ||
---|---|---|---|
001 | 306189 | ||
003 | MX-SnUAN | ||
005 | 20160429160023.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 gw | o |||| 0|eng d | ||
020 |
_a9783642343698 _99783642343698 |
||
024 | 7 |
_a10.1007/9783642343698 _2doi |
|
035 | _avtls000360495 | ||
039 | 9 |
_a201509030605 _bVLOAD _c201405070300 _dVLOAD _y201402201433 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA319-329.9 | |
100 | 1 |
_aStørmer, Erling. _eautor _9330691 |
|
245 | 1 | 0 |
_aPositive Linear Maps of Operator Algebras / _cby Erling Størmer. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2013. |
|
300 |
_aviii, 134 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Monographs in Mathematics, _x1439-7382 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- 1 Generalities for positive maps -- 2 Jordan algebras and projection maps -- 3 Extremal positive maps -- 4 Choi matrices and dual functionals -- 5 Mapping cones -- 6 Dual cones -- 7 States and positive maps -- 8 Norms of positive maps -- Appendix: A.1 Topologies on B(H) -- A.2 Tensor products -- A.3 An extension theorem -- Bibliography -- Index . | |
520 | _aThis volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps. The text examines the maps’ positivity properties, as well as their associated linear functionals together with their density operators. It features special sections on extremal positive maps and Choi matrices. In sum, this is a vital publication that covers a full spectrum of matters relating to positive linear maps, of which a large proportion is relevant and applicable to today’s quantum information theory. The latter sections of the book present the material in finite dimensions, while the text as a whole appeals to a wider and more general readership by keeping the mathematics as elementary as possible throughout. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642343681 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-34369-8 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c306189 _d306189 |