000 | 03496nam a22003735i 4500 | ||
---|---|---|---|
001 | 306232 | ||
003 | MX-SnUAN | ||
005 | 20170705134309.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 gw | o |||| 0|eng d | ||
020 |
_a9783642324512 _99783642324512 |
||
024 | 7 |
_a10.1007/9783642324512 _2doi |
|
035 | _avtls000359946 | ||
039 | 9 |
_a201509031006 _bVLOAD _c201405070252 _dVLOAD _y201402201422 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQ334-342 | |
100 | 1 |
_aBandyopadhyay, Sanghamitra. _eautor _9323158 |
|
245 | 1 | 0 |
_aUnsupervised Classification : _bSimilarity Measures, Classical and Metaheuristic Approaches, and Applications / _cby Sanghamitra Bandyopadhyay, Sriparna Saha. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2013. |
|
300 |
_axvI, 232 páginas 92 ilustraciones, 14 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aChap. 1 Introduction -- Chap. 2 Some Single- and Multiobjective Optimization Techniques -- Chap. 3 SimilarityMeasures -- Chap. 4 Clustering Algorithms -- Chap. 5 Point Symmetry Based Distance Measures and their Applications to Clustering -- Chap. 6 A Validity Index Based on Symmetry: Application to Satellite Image Segmentation -- Chap. 7 Symmetry Based Automatic Clustering -- Chap. 8 Some Line Symmetry Distance Based Clustering Techniques -- Chap. 9 Use of Multiobjective Optimization for Data Clustering -- References -- Index. | |
520 | _aClustering is an important unsupervised classification technique where data points are grouped such that points that are similar in some sense belong to the same cluster. Cluster analysis is a complex problem as a variety of similarity and dissimilarity measures exist in the literature. This is the first book focused on clustering with a particular emphasis on symmetry-based measures of similarity and metaheuristic approaches. The aim is to find a suitable grouping of the input data set so that some criteria are optimized, and using this the authors frame the clustering problem as an optimization one where the objectives to be optimized may represent different characteristics such as compactness, symmetrical compactness, separation between clusters, or connectivity within a cluster. They explain the techniques in detail and outline many detailed applications in data mining, remote sensing and brain imaging, gene expression data analysis, and face detection. The book will be useful to graduate students and researchers in computer science, electrical engineering, system science, and information technology, both as a text and as a reference book. It will also be useful to researchers and practitioners in industry working on pattern recognition, data mining, soft computing, metaheuristics, bioinformatics, remote sensing, and brain imaging. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aSaha, Sriparna. _eautor _9345435 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642324505 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-32451-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c306232 _d306232 |