000 03496nam a22003735i 4500
001 306232
003 MX-SnUAN
005 20170705134309.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783642324512
_99783642324512
024 7 _a10.1007/9783642324512
_2doi
035 _avtls000359946
039 9 _a201509031006
_bVLOAD
_c201405070252
_dVLOAD
_y201402201422
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ334-342
100 1 _aBandyopadhyay, Sanghamitra.
_eautor
_9323158
245 1 0 _aUnsupervised Classification :
_bSimilarity Measures, Classical and Metaheuristic Approaches, and Applications /
_cby Sanghamitra Bandyopadhyay, Sriparna Saha.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _axvI, 232 páginas 92 ilustraciones, 14 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aChap. 1 Introduction -- Chap. 2 Some Single- and Multiobjective Optimization Techniques -- Chap. 3 SimilarityMeasures -- Chap. 4 Clustering Algorithms -- Chap. 5 Point Symmetry Based Distance Measures and their Applications to Clustering -- Chap. 6 A Validity Index Based on Symmetry: Application to Satellite Image Segmentation -- Chap. 7 Symmetry Based Automatic Clustering -- Chap. 8 Some Line Symmetry Distance Based Clustering Techniques -- Chap. 9 Use of Multiobjective Optimization for Data Clustering -- References -- Index.
520 _aClustering is an important unsupervised classification technique where data points are grouped such that points that are similar in some sense belong to the same cluster. Cluster analysis is a complex problem as a variety of similarity and dissimilarity measures exist in the literature. This is the first book focused on clustering with a particular emphasis on symmetry-based measures of similarity and metaheuristic approaches. The aim is to find a suitable grouping of the input data set so that some criteria are optimized, and using this the authors frame the clustering problem as an optimization one where the objectives to be optimized may represent different characteristics such as compactness, symmetrical compactness, separation between clusters, or connectivity within a cluster. They explain the techniques in detail and outline many detailed applications in data mining, remote sensing and brain imaging, gene expression data analysis, and face detection. The book will be useful to graduate students and researchers in computer science, electrical engineering, system science, and information technology, both as a text and as a reference book. It will also be useful to researchers and practitioners in industry working on pattern recognition, data mining, soft computing, metaheuristics, bioinformatics, remote sensing, and brain imaging.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aSaha, Sriparna.
_eautor
_9345435
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642324505
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-32451-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c306232
_d306232