000 03162nam a22003855i 4500
001 306476
003 MX-SnUAN
005 20160429160039.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783642344534
_99783642344534
024 7 _a10.1007/9783642344534
_2doi
035 _avtls000360516
039 9 _a201509031011
_bVLOAD
_c201405070301
_dVLOAD
_y201402201433
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA440-699
100 1 _aBuekenhout, Francis.
_eautor
_9345769
245 1 0 _aDiagram Geometry :
_bRelated to Classical Groups and Buildings /
_cby Francis Buekenhout, Arjeh M. Cohen.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _axiii, 592 páginas 108 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,
_x0071-1136 ;
_v57
500 _aSpringer eBooks
505 0 _a1. Geometries -- 2. Diagrams -- 3. Chamber Systems -- 4. Thin Geometries -- 5. Linear Geometries -- 6. Projective and Affine Spaces -- 7. Polar Spaces -- 8. Projective Embeddings of Polar Spaces -- 9. Embedding Polar Spaces in Absolutes -- 10. Classical Polar Spaces -- 11. Buildings -- Bibliography -- Index.
520 _aThis book provides a self-contained introduction to diagram geometry.  Tight connections with group theory are shown. It treats thin geometries (related to Coxeter groups) and thick buildings from a diagrammatic perspective. Projective and affine geometry are main examples.  Polar geometry is motivated by polarities on diagram geometries and the complete classification of those polar geometries whose projective planes are Desarguesian is given. It differs from Tits' comprehensive treatment in that it uses Veldkamp's embeddings. The book intends to be a basic reference for those who study diagram geometry.  Group theorists will find examples of the use of diagram geometry.  Light on matroid theory is shed from the point of view of geometry with linear diagrams.  Those interested in Coxeter groups and those interested in buildings will find brief but self-contained introductions into these topics from the diagrammatic perspective.  Graph theorists will find many highly regular graphs. The text is written so graduate students will be able to follow the arguments without needing recourse to further literature. A strong point of the book is the density of examples.  
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aCohen, Arjeh M.
_eautor
_9328393
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642344527
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-34453-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c306476
_d306476