000 02129nam a22003855i 4500
001 306549
003 MX-SnUAN
005 20160429160042.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783642336577
_99783642336577
024 7 _a10.1007/9783642336577
_2doi
035 _avtls000360295
039 9 _a201509030603
_bVLOAD
_c201405070257
_dVLOAD
_y201402201429
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aSeber, George A.F.
_eautor
_9345850
245 1 0 _aAdaptive Sampling Designs :
_bInference for Sparse and Clustered Populations /
_cby George A.F. Seber, Mohammad M. Salehi.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aIx, 70 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Statistics,
_x2191-544X
500 _aSpringer eBooks
505 0 _aBasic Ideas -- Adaptive Cluster Sampling -- Rao-Blackwell Modi -- Primary and Secondary Units -- Inverse Sampling Methods -- Adaptive Allocation.
520 _aThis book aims to provide an overview of some adaptive techniques used in estimating parameters for finite populations where the sampling at any stage depends on the sampling information obtained to date. The sample adapts to new information as it comes in. These methods are especially used for sparse and clustered populations. Written by two acknowledged experts in the field of adaptive sampling.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aSalehi, Mohammad M.
_eautor
_9345851
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642336560
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-33657-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c306549
_d306549