000 03462nam a22003855i 4500
001 307228
003 MX-SnUAN
005 20160429160118.0
007 cr nn 008mamaa
008 150903s2013 gw | o |||| 0|eng d
020 _a9783642349133
_99783642349133
024 7 _a10.1007/9783642349133
_2doi
035 _avtls000360608
039 9 _a201509030628
_bVLOAD
_c201405070302
_dVLOAD
_y201402201435
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aGolyandina, Nina.
_eautor
_9346763
245 1 0 _aSingular Spectrum Analysis for Time Series /
_cby Nina Golyandina, Anatoly Zhigljavsky.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aIx, 120 páginas 41 ilustraciones, 38 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Statistics,
_x2191-544X
500 _aSpringer eBooks
505 0 _aIntroduction: Preliminaries -- SSA Methodology and the Structure of the Book -- SSA Topics Outside the Scope of this Book -- Common Symbols and Acronyms -- Basic SSA: The Main Algorithm -- Potential of Basic SSA -- Models of Time Series and SSA Objectives -- Choice of Parameters in Basic SSA -- Some Variations of Basic SSA -- SSA for Forecasting, interpolation, Filtration and Estimation: SSA Forecasting Algorithms -- LRR and Associated Characteristic Polynomials -- Recurrent Forecasting as Approximate Continuation -- Confidence Bounds for the Forecast -- Summary and Recommendations on Forecasting Parameters -- Case Study: ‘Fortified Wine’ -- Missing Value Imputation -- Subspace-Based Methods and Estimation of Signal Parameters -- SSA and Filters.
520 _aSingular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aZhigljavsky, Anatoly.
_eautor
_9303314
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642349126
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-34913-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c307228
_d307228