000 | 02725nam a22003735i 4500 | ||
---|---|---|---|
001 | 307229 | ||
003 | MX-SnUAN | ||
005 | 20160429160118.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 gw | o |||| 0|eng d | ||
020 |
_a9783642350603 _99783642350603 |
||
024 | 7 |
_a10.1007/9783642350603 _2doi |
|
035 | _avtls000360642 | ||
039 | 9 |
_a201509030628 _bVLOAD _c201405070303 _dVLOAD _y201402201436 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQB980-991 | |
100 | 1 |
_aMarch, Marisa Cristina. _eautor _9346764 |
|
245 | 1 | 0 |
_aAdvanced Statistical Methods for Astrophysical Probes of Cosmology / _cby Marisa Cristina March. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2013. |
|
300 |
_axx, 177 páginas 46 ilustraciones, 11 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Theses, Recognizing Outstanding Ph.D. Research, _x2190-5053 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- Cosmology background -- Dark energy and apparent late time acceleration -- Supernovae Ia -- Statistical techniques -- Bayesian Doubt: Should we doubt the Cosmological Constant? -- Bayesian parameter inference for SNeIa data -- Robustness to Systematic Error for Future Dark Energy Probes -- Summary and Conclusions -- Index. | |
520 | _aThis thesis explores advanced Bayesian statistical methods for extracting key information for cosmological model selection, parameter inference and forecasting from astrophysical observations. Bayesian model selection provides a measure of how good models in a set are relative to each other - but what if the best model is missing and not included in the set? Bayesian Doubt is an approach which addresses this problem and seeks to deliver an absolute rather than a relative measure of how good a model is. Supernovae type Ia were the first astrophysical observations to indicate the late time acceleration of the Universe - this work presents a detailed Bayesian Hierarchical Model to infer the cosmological parameters (in particular dark energy) from observations of these supernovae type Ia. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642350597 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-35060-3 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c307229 _d307229 |