000 | 03121nam a22003975i 4500 | ||
---|---|---|---|
001 | 307238 | ||
003 | MX-SnUAN | ||
005 | 20160429160119.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 gw | o |||| 0|eng d | ||
020 |
_a9783642355127 _99783642355127 |
||
024 | 7 |
_a10.1007/9783642355127 _2doi |
|
035 | _avtls000360764 | ||
039 | 9 |
_a201509030629 _bVLOAD _c201405070304 _dVLOAD _y201402201439 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA276-280 | |
100 | 1 |
_aBeran, Jan. _eautor _9346777 |
|
245 | 1 | 0 |
_aLong-Memory Processes : _bProbabilistic Properties and Statistical Methods / _cby Jan Beran, Yuanhua Feng, Sucharita Ghosh, Rafal Kulik. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2013. |
|
300 |
_axvii, 884 páginas 89 ilustraciones, 60 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aDefinition of Long Memory -- Origins and Generation of Long Memory -- Mathematical Concepts -- Limit Theorems -- Statistical Inference for Stationary Processes -- Statistical Inference for Nonlinear Processes -- Statistical Inference for Nonstationary Processes -- Forecasting -- Spatial and Space-Time Processes -- Resampling -- Function Spaces -- Regularly Varying Functions -- Vague Convergence -- Some Useful Integrals -- Notation and Abbreviations. | |
520 | _aLong-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aFeng, Yuanhua. _eautor _9346778 |
|
700 | 1 |
_aGhosh, Sucharita. _eautor _9309557 |
|
700 | 1 |
_aKulik, Rafal. _eautor _9346779 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642355110 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-35512-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c307238 _d307238 |