000 | 03113nam a22003615i 4500 | ||
---|---|---|---|
001 | 307870 | ||
003 | MX-SnUAN | ||
005 | 20160429160150.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 gw | o |||| 0|eng d | ||
020 |
_a9783658019488 _99783658019488 |
||
024 | 7 |
_a10.1007/9783658019488 _2doi |
|
035 | _avtls000362428 | ||
039 | 9 |
_a201509031037 _bVLOAD _c201405070329 _dVLOAD _y201402211049 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA76.9.D343 | |
100 | 1 |
_aGedikli, Fatih. _eautor _9347635 |
|
245 | 1 | 0 |
_aRecommender Systems and the Social Web : _bLeveraging Tagging Data for Recommender Systems / _cby Fatih Gedikli. |
264 | 1 |
_aWiesbaden : _bSpringer Fachmedien Wiesbaden : _bImprint: Springer Vieweg, _c2013. |
|
300 |
_axI, 112 páginas 29 ilustraciones, 14 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aRecommender Systems -- Social Tagging -- Algorithms -- Explanations. | |
520 | _aThere is an increasing demand for recommender systems due to the information overload users are facing on the Web. The goal of a recommender system is to provide personalized recommendations of products or services to users. With the advent of the Social Web, user-generated content has enriched the social dimension of the Web. As user-provided content data also tells us something about the user, one can learn the user’s individual preferences from the Social Web. This opens up completely new opportunities and challenges for recommender systems research. Fatih Gedikli deals with the question of how user-provided tagging data can be used to build better recommender systems. A tag recommender algorithm is proposed which recommends tags for users to annotate their favorite online resources. The author also proposes algorithms which exploit the user-provided tagging data and produce more accurate recommendations. On the basis of this idea, he shows how tags can be used to explain to the user the automatically generated recommendations in a clear and intuitively understandable form. With his book, Fatih Gedikli gives us an outlook on the next generation of recommendation systems in the Social Web sphere. Contents - Recommender Systems - Social Tagging - Algorithms - Explanations Target Groups · Researchers and students of computer science · Computer and web programmers The Author Dr. Fatih Gedikli is a research assistant in computer science at TU Dortmund, Germany. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783658019471 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-658-01948-8 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c307870 _d307870 |