000 | 03009nam a22003735i 4500 | ||
---|---|---|---|
001 | 308288 | ||
003 | MX-SnUAN | ||
005 | 20160429160208.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 gw | o |||| 0|eng d | ||
020 |
_a9783642398995 _99783642398995 |
||
024 | 7 |
_a10.1007/9783642398995 _2doi |
|
035 | _avtls000361886 | ||
039 | 9 |
_a201509030626 _bVLOAD _c201405070321 _dVLOAD _y201402211037 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA276-280 | |
100 | 1 |
_aBouza-Herrera, Carlos N. _eautor _9348161 |
|
245 | 1 | 0 |
_aHandling Missing Data in Ranked Set Sampling / _cby Carlos N. Bouza-Herrera. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2013. |
|
300 |
_ax, 116 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringerBriefs in Statistics, _x2191-544X |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Missing Observations and Data Quality Improvement -- Sampling Using Ranked Sets: Basic Concepts -- The Non Response Problem: Sub-sampling among the Non Respondents -- Imputation of the Missing Data -- Some Numerical Studies of the Behavior of RSS. | |
520 | _aThe existence of missing observations is a very important aspect to be considered in the application of survey sampling, for example. In human populations they may be caused by a refusal of some interviewees to give the true value for the variable of interest. Traditionally, simple random sampling is used to select samples. Most statistical models are supported by the use of samples selected by means of this design. In recent decades, an alternative design has started being used, which, in many cases, shows an improvement in terms of accuracy compared with traditional sampling. It is called Ranked Set Sampling (RSS). A random selection is made with the replacement of samples, which are ordered (ranked). The literature on the subject is increasing due to the potentialities of RSS for deriving more effective alternatives to well-established statistical models. In this work, the use of RSS sub-sampling for obtaining information among the non respondents and different imputation procedures are considered. RSS models are developed as counterparts of well-known simple random sampling (SRS) models. SRS and RSS models for estimating the population using missing data are presented and compared both theoretically and using numerical experiments. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783642398988 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-39899-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c308288 _d308288 |