000 03377nam a22003855i 4500
001 308636
003 MX-SnUAN
005 20170705134318.0
007 cr nn 008mamaa
008 150903s2014 gw | o |||| 0|eng d
020 _a9783642392986
_99783642392986
024 7 _a10.1007/9783642392986
_2doi
035 _avtls000361732
039 9 _a201509031033
_bVLOAD
_c201405070319
_dVLOAD
_y201402210954
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTA405-409.3
100 1 _aNguyen, Ngoc Son.
_eautor
_9348613
245 1 0 _aMultiple Impacts in Dissipative Granular Chains /
_cby Ngoc Son Nguyen, Bernard Brogliato.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2014.
300 _axxii, 234 páginas 109 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLecture Notes in Applied and Computational Mechanics,
_x1613-7736 ;
_v72
500 _aSpringer eBooks
505 0 _aIntroduction -- Multiple impacts in in granular chains -- Rigid-body multiple impact laws -- LZB multiple impact model -- Analysis and validation of the LZB model.
520 _aThe extension of collision models for single impacts between two bodies, to the case of multiple impacts (which take place when several collisions occur at the same time in a multibody system) is a challenge in Solid Mechanics, due to the complexity of such phenomena, even in the frictionless case. This monograph aims at presenting the main multiple collision rules proposed in the literature. Such collisions typically occur in granular materials, the simplest of which are made of chains of aligned balls. These chains are used throughout the book to analyze various multiple impact rules which extend the classical Newton (kinematic restitution), Poisson (kinetic restitution) and Darboux-Keller (energetic or kinetic restitution) approaches for impact modelling. The shock dynamics in various types of chains of aligned balls (monodisperse, tapered, decorated, stepped chains) is carefully studied and shown to depend on several parameters: restitution coefficients, contact stiffness ratios, elasticity coefficients (linear or nonlinear force/ indentation relation), and kinetic angles (that depend on the mass ratios). The dissipation and the dispersion of kinetic energy during a multiple impact are mandatory modelling, and are quantified with suitable indices. Particular attention is paid to the ability of the presented laws to correctly predict the wave effects in the chains. Comparisons between many numerical and experimental results are shown, as well as comparisons between four different impact laws in terms of their respective abilities to correctly model dissipation and dispersion of energy.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aBrogliato, Bernard.
_eautor
_9323209
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783642392979
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-642-39298-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c308636
_d308636