000 03960nam a22003975i 4500
001 308971
003 MX-SnUAN
005 20160429160239.0
007 cr nn 008mamaa
008 150903s2013 ja | o |||| 0|eng d
020 _a9784431542223
_99784431542223
024 7 _a10.1007/9784431542223
_2doi
035 _avtls000363855
039 9 _a201509031025
_bVLOAD
_c201405070349
_dVLOAD
_y201402211156
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQH359-425
100 1 _aShichida, Yoshinori.
_eautor
_9349064
245 1 0 _aEvolution and Senses :
_bOpsins, Bitter Taste, and Olfaction /
_cby Yoshinori Shichida, Takahiro Yamashita, Hiroo Imai, Takushi Kishida.
264 1 _aTokyo :
_bSpringer Japan :
_bImprint: Springer,
_c2013.
300 _ax, 46 páginas 12 ilustraciones, 10 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Biology,
_x2192-2179
500 _aSpringer eBooks
520 _aThis book focuses on sensing and the evolution of animals. Using the five senses (visual, auditory, and olfactory perception, and taste and touch), animals can receive environmental stimuli and respond to them. Changes in these sensitivities might cause changes in aspects of animals’ lives such as habitat, activity timing, and diet—and vice versa. Recent advances in genome and molecular analysis enable us to investigate certain changes in the receptors or mechanisms involved in sensing and provide clues for understanding the evolution of animals related to those changes. The first chapter deals with the molecular evolution of opsins. In addition to the well-known function of opsins as visual receptors, opsins can be related to non-visual photoreception such as photoentrainment of circadian rhythm, photoperiodism, and background adaptation. Molecular phylogenic studies reveal that all opsin genes have evolved from one ancient opsin gene. The evaluation of the functions of each extant opsin protein based on the molecular features enables us to predict the molecular evolution and diversification of opsins during the evolution of animals. These studies shed light on which amino-acid substitutions cause the functional diversification of opsins and how they have influenced the evolution of animals. The second chapter has to do with bitter taste perception, a key detection mechanism against the ingestion of bioactive substances. Genetic and behavioral evidence reveal the existence of "non-taster" Japanese macaques for specific bitter compounds, which originated in a restricted region of Japan. This finding might provide a clue for elucidating the ecological, evolutionary, and neurobiological aspects of bitter taste perception of primates. The third chapter presents an extreme example of the evolution of olfaction, namely, that fully aquatic amniotes have generally reduced their olfactory capacity considerably compared to their terrestrial relatives. Interestingly, the remaining olfactory abilities are quite different among three fully aquatic amniotes investigated: toothed whales have no nervous system structures that mediate olfaction, but baleen whales can smell in air, and it has been suggested that sea snakes smell underwater.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aYamashita, Takahiro.
_eautor
_9349065
700 1 _aImai, Hiroo.
_eautor
_9349066
700 1 _aKishida, Takushi.
_eautor
_9349067
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9784431542216
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-4-431-54222-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c308971
_d308971