000 03077nam a22003615i 4500
001 309434
003 MX-SnUAN
005 20160429160302.0
007 cr nn 008mamaa
008 150903s2012 gw | o |||| 0|eng d
020 _a9783834823762
_99783834823762
024 7 _a10.1007/9783834823762
_2doi
035 _avtls000363296
039 9 _a201509031022
_bVLOAD
_c201405070342
_dVLOAD
_y201402211143
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQC1-75
100 1 _aKrüger, Timm.
_eautor
_9349683
245 1 0 _aComputer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear /
_cby Timm Krüger.
264 1 _aWiesbaden :
_bVieweg+Teubner Verlag :
_bImprint: Vieweg+Teubner Verlag,
_c2012.
300 _axiii, 163 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aComplex fluids and their rheology -- Physics of red blood cells and hemorheology -- Numerical model for simulations of red blood cell suspensions -- Physical considerations and ingredients for the numerical model -- Fluid solver: the lattice Boltzmann method -- Fluid-structure interaction: the immersed boundary method -- Membrane model and energetics -- Stress evaluation in combined immersed boundary lattice Boltzmann simulations -- Rheology and microscopic behavior of red blood cell suspensions.
520 _aThe rheology of dense red blood cell suspensions is investigated via computer simulations based on the lattice Boltzmann, the immersed boundary, and the finite element methods. The red blood cells are treated as extended and deformable particles immersed in the ambient fluid. In the first part of the work, the numerical model and strategies for stress evaluation are discussed. In the second part, the behavior of the suspensions in simple shear flow is studied for different volume fractions, particle deformabilities, and shear rates. Shear thinning behavior is recovered. The existence of a shear-induced transition from a tumbling to a tank-treading motion is demonstrated. The transition can be parameterized by a single quantity, namely the effective capillary number. It is the ratio of the suspension stress and the characteristic particle membrane stress. At the transition point, a strong increase in the orientational order of the red blood cells and a significant decrease of the particle diffusivity are observed. However, the average cell deformation shows no signature of the transition.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783834823755
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-8348-2376-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309434
_d309434