000 03471nam a22003735i 4500
001 309537
003 MX-SnUAN
005 20160429160307.0
007 cr nn 008mamaa
008 150903s2007 sz | o |||| 0|eng d
020 _a9783764379889
_99783764379889
024 7 _a10.1007/9783764379889
_2doi
035 _avtls000362849
039 9 _a201509030649
_bVLOAD
_c201405070335
_dVLOAD
_y201402211059
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aT57-57.97
100 1 _aAbonyi, János.
_eautor
_9315048
245 1 0 _aCluster Analysis for Data Mining and System Identification /
_cby János Abonyi, Balázs Feil.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2007.
300 _axviii, 303 páginas 120 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aClassical Fuzzy Cluster Analysis -- Visualization of the Clustering Results -- Clustering for Fuzzy Model Identification — Regression -- Fuzzy Clustering for System Identification -- Fuzzy Model based Classifiers -- Segmentation of Multivariate Time-series.
520 _aThis book presents new approaches to data mining and system identification. Algorithms that can be used for the clustering of data have been overviewed. New techniques and tools are presented for the clustering, classification, regression and visualization of complex datasets. Special attention is given to the analysis of historical process data, tailored algorithms are presented for the data driven modeling of dynamical systems, determining the model order of nonlinear input-output black box models, and the segmentation of multivariate time-series. The main methods and techniques are illustrated through several simulated and real-world applications from data mining and process engineering practice. The book is aimed primarily at practitioners, researches, and professionals in statistics, data mining, business intelligence, and systems engineering, but it is also accessible to graduate and undergraduate students in applied mathematics, computer science, electrical and process engineering. Familiarity with the basics of system identification and fuzzy systems is helpful but not required. Key features: - Detailed overview of the most powerful algorithms and approaches for data mining and system identification is presented. - Extensive references give a good overview of the current state of the application of computational intelligence in data mining and system identification, and suggest further reading for additional research. - Numerous illustrations to facilitate the understanding of ideas and methods presented. - Supporting MATLAB files, available at the website www.fmt.uni-pannon.hu/softcomp create a computational platform for exploration and illustration of many concepts and algorithms presented in the book.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aFeil, Balázs.
_eautor
_9349823
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764379872
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-7988-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309537
_d309537