000 03296nam a22003975i 4500
001 309546
003 MX-SnUAN
005 20160429160308.0
007 cr nn 008mamaa
008 150903s2008 sz | o |||| 0|eng d
020 _a9783764388270
_99783764388270
024 7 _a10.1007/9783764388270
_2doi
035 _avtls000362979
039 9 _a201509030650
_bVLOAD
_c201405070337
_dVLOAD
_y201402211136
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA174-183
100 1 _aMyasnikov, Alexei.
_eautor
_9349837
245 1 0 _aGroup-based Cryptography /
_cby Alexei Myasnikov, Alexander Ushakov, Vladimir Shpilrain.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvanced Courses in Mathematics - CRM Barcelona, Centre de Recerca Matemàtica
500 _aSpringer eBooks
505 0 _aBackground on Groups, Complexity, and Cryptography -- Background on Public Key Cryptography -- Background on Combinatorial Group Theory -- Background on Computational Complexity -- Non-commutative Cryptography -- Canonical Non-commutative Cryptography -- Platform Groups -- Using Decision Problems in Public Key Cryptography -- Generic Complexity and Cryptanalysis -- Distributional Problems and the Average-Case Complexity -- Generic Case Complexity -- Generic Complexity of NP-complete Problems -- Asymptotically Dominant Properties and Cryptanalysis -- Asymptotically Dominant Properties -- Length-Based and Quotient Attacks.
520 _aThis book is about relations between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It is explored how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in public key cryptography. It is also shown that there is a remarkable feedback from cryptography to combinatorial group theory because some of the problems motivated by cryptography appear to be new to group theory, and they open many interesting research avenues within group theory. Then, complexity theory, notably generic-case complexity of algorithms, is employed for cryptanalysis of various cryptographic protocols based on infinite groups, and the ideas and machinery from the theory of generic-case complexity are used to study asymptotically dominant properties of some infinite groups that have been applied in public key cryptography so far. Its elementary exposition makes the book accessible to graduate as well as undergraduate students in mathematics or computer science.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aUshakov, Alexander.
_eautor
_9349838
700 1 _aShpilrain, Vladimir.
_eautor
_9349839
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764388263
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8827-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309546
_d309546