000 | 03077nam a22003975i 4500 | ||
---|---|---|---|
001 | 309591 | ||
003 | MX-SnUAN | ||
005 | 20160429160312.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 sz | o |||| 0|eng d | ||
020 |
_a9783764386429 _99783764386429 |
||
024 | 7 |
_a10.1007/9783764386429 _2doi |
|
035 | _avtls000362943 | ||
039 | 9 |
_a201509030650 _bVLOAD _c201405070336 _dVLOAD _y201402211135 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA641-670 | |
100 | 1 |
_aPigola, Stefano. _eautor _9349953 |
|
245 | 1 | 0 |
_aVanishing and Finiteness Results in Geometric Analysis : _bA Generalization of the Bochner Technique / _cby Stefano Pigola, Alberto G. Setti, Marco Rigoli. |
264 | 1 |
_aBasel : _bBirkhäuser Basel, _c2008. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v266 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aHarmonic, pluriharmonic, holomorphic maps and basic Hermitian and Kählerian geometry -- Comparison Results -- Review of spectral theory -- Vanishing results -- A finite-dimensionality result -- Applications to harmonic maps -- Some topological applications -- Constancy of holomorphic maps and the structure of complete Kähler manifolds -- Splitting and gap theorems in the presence of a Poincaré-Sobolev inequality. | |
520 | _aThis book presents very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods from spectral theory and qualitative properties of solutions of PDEs to comparison theorems in Riemannian geometry and potential theory. All needed tools are described in detail, often with an original approach. Some of the applications presented concern the topology at infinity of submanifolds, Lp cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for Kähler manifolds. The book is essentially self-contained and supplies in an original presentation the necessary background material not easily available in book form. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aSetti, Alberto G. _eautor _9324733 |
|
700 | 1 |
_aRigoli, Marco. _eautor _9324732 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783764386412 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8642-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c309591 _d309591 |