000 03077nam a22003975i 4500
001 309591
003 MX-SnUAN
005 20160429160312.0
007 cr nn 008mamaa
008 150903s2008 sz | o |||| 0|eng d
020 _a9783764386429
_99783764386429
024 7 _a10.1007/9783764386429
_2doi
035 _avtls000362943
039 9 _a201509030650
_bVLOAD
_c201405070336
_dVLOAD
_y201402211135
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aPigola, Stefano.
_eautor
_9349953
245 1 0 _aVanishing and Finiteness Results in Geometric Analysis :
_bA Generalization of the Bochner Technique /
_cby Stefano Pigola, Alberto G. Setti, Marco Rigoli.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v266
500 _aSpringer eBooks
505 0 _aHarmonic, pluriharmonic, holomorphic maps and basic Hermitian and Kählerian geometry -- Comparison Results -- Review of spectral theory -- Vanishing results -- A finite-dimensionality result -- Applications to harmonic maps -- Some topological applications -- Constancy of holomorphic maps and the structure of complete Kähler manifolds -- Splitting and gap theorems in the presence of a Poincaré-Sobolev inequality.
520 _aThis book presents very recent results involving an extensive use of analytical tools in the study of geometrical and topological properties of complete Riemannian manifolds. It analyzes in detail an extension of the Bochner technique to the non compact setting, yielding conditions which ensure that solutions of geometrically significant differential equations either are trivial (vanishing results) or give rise to finite dimensional vector spaces (finiteness results). The book develops a range of methods from spectral theory and qualitative properties of solutions of PDEs to comparison theorems in Riemannian geometry and potential theory. All needed tools are described in detail, often with an original approach. Some of the applications presented concern the topology at infinity of submanifolds, Lp cohomology, metric rigidity of manifolds with positive spectrum, and structure theorems for Kähler manifolds. The book is essentially self-contained and supplies in an original presentation the necessary background material not easily available in book form.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aSetti, Alberto G.
_eautor
_9324733
700 1 _aRigoli, Marco.
_eautor
_9324732
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764386412
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8642-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309591
_d309591