000 | 03574nam a22004095i 4500 | ||
---|---|---|---|
001 | 309662 | ||
003 | MX-SnUAN | ||
005 | 20170705134320.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 sz | o |||| 0|eng d | ||
020 |
_a9783764381332 _99783764381332 |
||
024 | 7 |
_a10.1007/9783764381332 _2doi |
|
035 | _avtls000362864 | ||
039 | 9 |
_a201509031020 _bVLOAD _c201405070335 _dVLOAD _y201402211134 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA252.3 | |
100 | 1 |
_aCapogna, Luca. _eautor _9323732 |
|
245 | 1 | 3 |
_aAn Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem / _cby Luca Capogna, Scott D. Pauls, Donatella Danielli ; edited by Jeremy T. Tyson. |
264 | 1 |
_aBasel : _bBirkhäuser Basel, _c2007. |
|
300 |
_axvI, 223 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v259 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aThe Isoperimetric Problem in Euclidean Space -- The Heisenberg Group and Sub-Riemannian Geometry -- Applications of Heisenberg Geometry -- Horizontal Geometry of Submanifolds -- Sobolev and BV Spaces -- Geometric Measure Theory and Geometric Function Theory -- The Isoperimetric Inequality in ? -- The Isoperimetric Profile of ? -- Best Constants for Other Geometric Inequalities on the Heisenberg Group. | |
520 | _aThe past decade has witnessed a dramatic and widespread expansion of interest and activity in sub-Riemannian (Carnot-Caratheodory) geometry, motivated both internally by its role as a basic model in the modern theory of analysis on metric spaces, and externally through the continuous development of applications (both classical and emerging) in areas such as control theory, robotic path planning, neurobiology and digital image reconstruction. The quintessential example of a sub Riemannian structure is the Heisenberg group, which is a nexus for all of the aforementioned applications as well as a point of contact between CR geometry, Gromov hyperbolic geometry of complex hyperbolic space, subelliptic PDE, jet spaces, and quantum mechanics. This book provides an introduction to the basics of sub-Riemannian differential geometry and geometric analysis in the Heisenberg group, focusing primarily on the current state of knowledge regarding Pierre Pansu's celebrated 1982 conjecture regarding the sub-Riemannian isoperimetric profile. It presents a detailed description of Heisenberg submanifold geometry and geometric measure theory, which provides an opportunity to collect for the first time in one location the various known partial results and methods of attack on Pansu's problem. As such it serves simultaneously as an introduction to the area for graduate students and beginning researchers, and as a research monograph focused on the isoperimetric problem suitable for experts in the area. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aPauls, Scott D. _eautor _9350062 |
|
700 | 1 |
_aDanielli, Donatella. _eautor _9350063 |
|
700 | 1 |
_aTyson, Jeremy T. _eeditor. _9350064 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783764381325 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8133-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c309662 _d309662 |