000 03574nam a22004095i 4500
001 309662
003 MX-SnUAN
005 20170705134320.0
007 cr nn 008mamaa
008 150903s2007 sz | o |||| 0|eng d
020 _a9783764381332
_99783764381332
024 7 _a10.1007/9783764381332
_2doi
035 _avtls000362864
039 9 _a201509031020
_bVLOAD
_c201405070335
_dVLOAD
_y201402211134
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA252.3
100 1 _aCapogna, Luca.
_eautor
_9323732
245 1 3 _aAn Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem /
_cby Luca Capogna, Scott D. Pauls, Donatella Danielli ; edited by Jeremy T. Tyson.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2007.
300 _axvI, 223 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v259
500 _aSpringer eBooks
505 0 _aThe Isoperimetric Problem in Euclidean Space -- The Heisenberg Group and Sub-Riemannian Geometry -- Applications of Heisenberg Geometry -- Horizontal Geometry of Submanifolds -- Sobolev and BV Spaces -- Geometric Measure Theory and Geometric Function Theory -- The Isoperimetric Inequality in ? -- The Isoperimetric Profile of ? -- Best Constants for Other Geometric Inequalities on the Heisenberg Group.
520 _aThe past decade has witnessed a dramatic and widespread expansion of interest and activity in sub-Riemannian (Carnot-Caratheodory) geometry, motivated both internally by its role as a basic model in the modern theory of analysis on metric spaces, and externally through the continuous development of applications (both classical and emerging) in areas such as control theory, robotic path planning, neurobiology and digital image reconstruction. The quintessential example of a sub Riemannian structure is the Heisenberg group, which is a nexus for all of the aforementioned applications as well as a point of contact between CR geometry, Gromov hyperbolic geometry of complex hyperbolic space, subelliptic PDE, jet spaces, and quantum mechanics. This book provides an introduction to the basics of sub-Riemannian differential geometry and geometric analysis in the Heisenberg group, focusing primarily on the current state of knowledge regarding Pierre Pansu's celebrated 1982 conjecture regarding the sub-Riemannian isoperimetric profile. It presents a detailed description of Heisenberg submanifold geometry and geometric measure theory, which provides an opportunity to collect for the first time in one location the various known partial results and methods of attack on Pansu's problem. As such it serves simultaneously as an introduction to the area for graduate students and beginning researchers, and as a research monograph focused on the isoperimetric problem suitable for experts in the area.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aPauls, Scott D.
_eautor
_9350062
700 1 _aDanielli, Donatella.
_eautor
_9350063
700 1 _aTyson, Jeremy T.
_eeditor.
_9350064
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764381325
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8133-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309662
_d309662