000 04194nam a22003735i 4500
001 309756
003 MX-SnUAN
005 20160429160322.0
007 cr nn 008mamaa
008 150903s2008 gw | o |||| 0|eng d
020 _a9783790820645
_99783790820645
024 7 _a10.1007/9783790820645
_2doi
035 _avtls000363150
039 9 _a201509030635
_bVLOAD
_c201405070339
_dVLOAD
_y201402211140
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aShalabh.
_eautor
_9314330
245 1 0 _aRecent Advances in Linear Models and Related Areas :
_bEssays in Honour of Helge Toutenburg /
_cby Shalabh, Christian Heumann.
264 1 _aHeidelberg :
_bPhysica-Verlag HD,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aOn the Identification of Trend and Correlation in Temporal and Spatial Regression -- Estimating the Number of Clusters in Logistic Regression Clustering by an Information Theoretic Criterion -- Quasi Score and Corrected Score Estimation in the Polynomial Measurement Error Model -- Estimation and Finite Sample Bias and MSE of FGLS Estimator of Paired Data Model -- Prediction of Finite Population Total in Measurement Error Models -- The Vector Cross Product and 4 × 4 Skew-symmetric Matrices -- Simultaneous Prediction of Actual and Average Values of Response Variable in Replicated Measurement Error Models -- Local Sensitivity in the Inequality Restricted Linear Model -- Boosting Correlation Based Penalization in Generalized Linear Models -- Simultaneous Prediction Based on Shrinkage Estimator -- Finite Mixtures of Generalized Linear Regression Models -- Higher-order Dependence in the General Power ARCH Process and the Role of Power Parameter -- Regression Calibration for Cox Regression Under Heteroscedastic Measurement Error — Determining Risk Factors of Cardiovascular Diseases from Error-prone Nutritional Replication Data -- Homoscedastic Balanced Two-fold Nested Model when the Number of Sub-classes is Large -- QR-Decomposition from the Statistical Point of View -- On Penalized Least-Squares: Its Mean Squared Error and a Quasi-Optimal Weight Ratio -- Optimal Central Composite Designs for Fitting Second Order Response Surface Linear Regression Models -- Does Convergence Really Matter? -- OLS-Based Estimation of the Disturbance Variance Under Spatial Autocorrelation -- Application of Self-Organizing Maps to Detect Population Stratification -- Optimal Designs for Microarray Experiments with Biological and Technical Replicates -- Weighted Mixed Regression Estimation Under Biased Stochastic Restrictions -- Coin Tossing and Spinning – Useful Classroom Experiments for Teaching Statistics -- Linear Models in Credit Risk Modeling.
520 _aThe theory of linear models and regression analysis plays an essential role in the development of methods for the statistical modelling of data. The book presents the most recent developments in the theory and applications of linear models and related areas of active research. The contributions include topics such as boosting, Cox regression models, cluster analysis, design of experiments, feasible generalized least squares, information theory, matrix theory, measurement error models, missing data models, mixture models, panel data models, penalized least squares, prediction, regression calibration, spatial models and time series models. Several contributions illustrate applications in biomedical research, economics, finance, genetic epidemiology and medicine.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aHeumann, Christian.
_eautor
_9332543
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783790820638
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7908-2064-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309756
_d309756