000 02266nam a22003855i 4500
001 309781
003 MX-SnUAN
005 20160429160323.0
007 cr nn 008mamaa
008 150903s2009 sz | o |||| 0|eng d
020 _a9783764387150
_99783764387150
024 7 _a10.1007/9783764387150
_2doi
035 _avtls000362954
039 9 _a201509030650
_bVLOAD
_c201405070336
_dVLOAD
_y201402211136
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aGromoll, Detlef.
_eautor
_9350235
245 1 0 _aMetric Foliations and Curvature /
_cby Detlef Gromoll, Gerard Walschap.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v268
500 _aSpringer eBooks
505 0 _aSubmersions, Foliations, and Metrics -- Basic Constructions and Examples -- Open Manifolds of Nonnegative Curvature -- Metric Foliations in Space Forms.
520 _aIn the past three or four decades, there has been increasing realization that metric foliations play a key role in understanding the structure of Riemannian manifolds, particularly those with positive or nonnegative sectional curvature. In fact, all known such spaces are constructed from only a representative handful by means of metric fibrations or deformations thereof. This text is an attempt to document some of these constructions, many of which have only appeared in journal form. The emphasis here is less on the fibration itself and more on how to use it to either construct or understand a metric with curvature of fixed sign on a given space.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aWalschap, Gerard.
_eautor
_9350236
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764387143
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8715-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309781
_d309781