000 | 03186nam a22004095i 4500 | ||
---|---|---|---|
001 | 309819 | ||
003 | MX-SnUAN | ||
005 | 20160429160325.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 sz | o |||| 0|eng d | ||
020 |
_a9783764387228 _99783764387228 |
||
024 | 7 |
_a10.1007/9783764387228 _2doi |
|
035 | _avtls000362956 | ||
039 | 9 |
_a201509030650 _bVLOAD _c201405070336 _dVLOAD _y201402211136 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA312-312.5 | |
100 | 1 |
_aAmbrosio, Luigi. _eautor _9334143 |
|
245 | 1 | 0 |
_aGradient Flows : _bin Metric Spaces and in the Space of Probability Measures / _cby Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré. |
250 | _aSecond Edition. | ||
264 | 1 |
_aBasel : _bBirkhäuser Basel, _c2008. |
|
300 |
_aIx, 334 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aLectures in Mathematics ETH Zürich | |
500 | _aSpringer eBooks | ||
505 | 0 | _aNotation -- Notation -- Gradient Flow in Metric Spaces -- Curves and Gradients in Metric Spaces -- Existence of Curves of Maximal Slope and their Variational Approximation -- Proofs of the Convergence Theorems -- Uniqueness, Generation of Contraction Semigroups, Error Estimates -- Gradient Flow in the Space of Probability Measures -- Preliminary Results on Measure Theory -- The Optimal Transportation Problem -- The Wasserstein Distance and its Behaviour along Geodesics -- Absolutely Continuous Curves in p(X) and the Continuity Equation -- Convex Functionals in p(X) -- Metric Slope and Subdifferential Calculus in (X) -- Gradient Flows and Curves of Maximal Slope in p(X). | |
520 | _aThis book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. It consists of two parts, the first one concerning gradient flows in metric spaces and the second one devoted to gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance. The two parts have some connections, due to the fact that the space of probability measures provides an important model to which the "metric" theory applies, but the book is conceived in such a way that the two parts can be read independently, the first one by the reader more interested in non-smooth analysis and analysis in metric spaces, and the second one by the reader more orientated towards the applications in partial differential equations, measure theory and probability. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aGigli, Nicola. _eautor _9350278 |
|
700 | 1 |
_aSavaré, Giuseppe. _eautor _9350279 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783764387211 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8722-8 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c309819 _d309819 |