000 03186nam a22004095i 4500
001 309819
003 MX-SnUAN
005 20160429160325.0
007 cr nn 008mamaa
008 150903s2008 sz | o |||| 0|eng d
020 _a9783764387228
_99783764387228
024 7 _a10.1007/9783764387228
_2doi
035 _avtls000362956
039 9 _a201509030650
_bVLOAD
_c201405070336
_dVLOAD
_y201402211136
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA312-312.5
100 1 _aAmbrosio, Luigi.
_eautor
_9334143
245 1 0 _aGradient Flows :
_bin Metric Spaces and in the Space of Probability Measures /
_cby Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré.
250 _aSecond Edition.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2008.
300 _aIx, 334 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aLectures in Mathematics ETH Zürich
500 _aSpringer eBooks
505 0 _aNotation -- Notation -- Gradient Flow in Metric Spaces -- Curves and Gradients in Metric Spaces -- Existence of Curves of Maximal Slope and their Variational Approximation -- Proofs of the Convergence Theorems -- Uniqueness, Generation of Contraction Semigroups, Error Estimates -- Gradient Flow in the Space of Probability Measures -- Preliminary Results on Measure Theory -- The Optimal Transportation Problem -- The Wasserstein Distance and its Behaviour along Geodesics -- Absolutely Continuous Curves in p(X) and the Continuity Equation -- Convex Functionals in p(X) -- Metric Slope and Subdifferential Calculus in (X) -- Gradient Flows and Curves of Maximal Slope in p(X).
520 _aThis book is devoted to a theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure. It consists of two parts, the first one concerning gradient flows in metric spaces and the second one devoted to gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance. The two parts have some connections, due to the fact that the space of probability measures provides an important model to which the "metric" theory applies, but the book is conceived in such a way that the two parts can be read independently, the first one by the reader more interested in non-smooth analysis and analysis in metric spaces, and the second one by the reader more orientated towards the applications in partial differential equations, measure theory and probability.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGigli, Nicola.
_eautor
_9350278
700 1 _aSavaré, Giuseppe.
_eautor
_9350279
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764387211
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8722-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309819
_d309819