000 | 02667nam a22003615i 4500 | ||
---|---|---|---|
001 | 309888 | ||
003 | MX-SnUAN | ||
005 | 20160429160329.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 sz | o |||| 0|eng d | ||
020 |
_a9783764374327 _99783764374327 |
||
024 | 7 |
_a10.1007/3764374322 _2doi |
|
035 | _avtls000362759 | ||
039 | 9 |
_a201509030401 _bVLOAD _c201404121559 _dVLOAD _c201404091337 _dVLOAD _y201402211057 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA440-699 | |
100 | 1 |
_aBenz, Walter. _eautor _9325143 |
|
245 | 1 | 0 |
_aClassical Geometries in Modern Contexts : _bGeometry of Real Inner Product Spaces / _cby Walter Benz. |
264 | 1 |
_aBasel : _bBirkhäuser Basel, _c2005. |
|
300 |
_axii, 244 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aTranslation Groups -- Euclidean and Hyperbolic Geometry -- Sphere Geometries of Möbius and Lie -- Lorentz Transformations. | |
520 | _aThis book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of Möbius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. The geometrical notions of this book are based on general spaces X as described. This implies that also mathematicians who have not so far been especially interested in geometry may study and understand great ideas of classical geometries in modern and general contexts. Proofs of newer theorems, characterizing isometries and Lorentz transformations under mild hypotheses are included, like for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. Only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9783764373719 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/3-7643-7432-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c309888 _d309888 |