000 02667nam a22003615i 4500
001 309888
003 MX-SnUAN
005 20160429160329.0
007 cr nn 008mamaa
008 150903s2005 sz | o |||| 0|eng d
020 _a9783764374327
_99783764374327
024 7 _a10.1007/3764374322
_2doi
035 _avtls000362759
039 9 _a201509030401
_bVLOAD
_c201404121559
_dVLOAD
_c201404091337
_dVLOAD
_y201402211057
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA440-699
100 1 _aBenz, Walter.
_eautor
_9325143
245 1 0 _aClassical Geometries in Modern Contexts :
_bGeometry of Real Inner Product Spaces /
_cby Walter Benz.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2005.
300 _axii, 244 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aTranslation Groups -- Euclidean and Hyperbolic Geometry -- Sphere Geometries of Möbius and Lie -- Lorentz Transformations.
520 _aThis book is based on real inner product spaces X of arbitrary (finite or infinite) dimension greater than or equal to 2. With natural properties of (general) translations and general distances of X, euclidean and hyperbolic geometries are characterized. For these spaces X also the sphere geometries of Möbius and Lie are studied (besides euclidean and hyperbolic geometry), as well as geometries where Lorentz transformations play the key role. The geometrical notions of this book are based on general spaces X as described. This implies that also mathematicians who have not so far been especially interested in geometry may study and understand great ideas of classical geometries in modern and general contexts. Proofs of newer theorems, characterizing isometries and Lorentz transformations under mild hypotheses are included, like for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. Only prerequisites are basic linear algebra and basic 2- and 3-dimensional real geometry.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764373719
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/3-7643-7432-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309888
_d309888