000 03256nam a22004095i 4500
001 309902
003 MX-SnUAN
005 20160429160330.0
007 cr nn 008mamaa
008 150903s2009 sz | o |||| 0|eng d
020 _a9783764389406
_99783764389406
024 7 _a10.1007/9783764389406
_2doi
035 _avtls000363001
039 9 _a201509030650
_bVLOAD
_c201405070338
_dVLOAD
_y201402211137
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA297-299.4
100 1 _aBertoluzza, Silvia.
_eautor
_9342807
245 1 0 _aNumerical Solutions of Partial Differential Equations /
_cby Silvia Bertoluzza, Giovanni Russo, Silvia Falletta, Chi-Wang Shu.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvanced Courses in Mathematics - CRM Barcelona
500 _aSpringer eBooks
505 0 _aWavelets and Partial Differential Equations -- What is a Wavelet? -- The Fundamental Property of Wavelets -- Wavelets for Partial Differential Equations -- High-Order Shock-Capturing Schemes for Balance Laws -- Upwind Scheme for Systems -- The Numerical Flux Function -- Nonlinear Reconstruction and High-Order Schemes -- Central Schemes -- Systems with Stiff Source -- Discontinuous Galerkin Methods: General Approach and Stability -- Time Discretization -- Discontinuous Galerkin Method for Conservation Laws -- Discontinuous Galerkin Method for Convection-Diffusion Equations -- Discontinuous Galerkin Method for PDEs Containing Higher-Order Spatial Derivatives.
520 _aThis volume offers researchers the opportunity to catch up with important developments in the field of numerical analysis and scientific computing and to get in touch with state-of-the-art numerical techniques. The book has three parts. The first one is devoted to the use of wavelets to derive some new approaches in the numerical solution of PDEs, showing in particular how the possibility of writing equivalent norms for the scale of Besov spaces allows to develop some new methods. The second part provides an overview of the modern finite-volume and finite-difference shock-capturing schemes for systems of conservation and balance laws, with emphasis on providing a unified view of such schemes by identifying the essential aspects of their construction. In the last part a general introduction is given to the discontinuous Galerkin methods for solving some classes of PDEs, discussing cell entropy inequalities, nonlinear stability and error estimates.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aRusso, Giovanni.
_eautor
_9350398
700 1 _aFalletta, Silvia.
_eautor
_9350399
700 1 _aShu, Chi-Wang.
_eautor
_9350400
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764389390
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8940-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309902
_d309902