000 03055nam a22003975i 4500
001 309921
003 MX-SnUAN
005 20160429160331.0
007 cr nn 008mamaa
008 150903s2014 au | o |||| 0|eng d
020 _a9783709116432
_99783709116432
024 7 _a10.1007/9783709116432
_2doi
035 _avtls000362676
039 9 _a201509030648
_bVLOAD
_c201405070334
_dVLOAD
_y201402211055
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTA349-359
100 1 _aRozvany, George I. N.
_eeditor.
_9350424
245 1 0 _aTopology Optimization in Structural and Continuum Mechanics /
_cedited by George I. N. Rozvany, Tomasz Lewi?ski.
250 _a1.
264 1 _aVienna :
_bSpringer Vienna :
_bImprint: Springer,
_c2014.
300 _ax, 471 páginas 150 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aCISM International Centre for Mechanical Sciences,
_x0254-1971 ;
_v549
500 _aSpringer eBooks
505 0 _aFrom the Contents: Structural topology optimization -- On basic properties of Michell's structures -- Validation of numerical method by analytical benchmarks and verification of exact solutions by numerical methods.
520 _aThe book covers new developments in structural topology optimization. Basic features and limitations of Michell’s truss theory, its extension to a broader class of support conditions, generalizations of truss topology optimization, and Michell continua are reviewed. For elastic bodies, the layout problems in linear elasticity are discussed and the method of relaxation by homogenization is outlined. The classical problem of free material design is shown to be reducible to a locking material problem, even in the multiload case. For structures subjected to dynamic loads, it is explained how they can be designed so that the structural eigenfrequencies of vibration are as far away as possible from a prescribed external excitation frequency (or a band of excitation frequencies) in order to avoid resonance phenomena with high vibration and noise levels. For diffusive and convective transport processes and multiphysics problems, applications of the density method are discussed. In order to take uncertainty in material parameters, geometry, and operating conditions into account, techniques of reliability-based design optimization are introduced and reviewed for their applicability to topology optimization.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLewi?ski, Tomasz.
_eeditor.
_9350425
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783709116425
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7091-1643-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309921
_d309921