000 03668nam a22003975i 4500
001 309943
003 MX-SnUAN
005 20160429160332.0
007 cr nn 008mamaa
008 150903s2010 sz | o |||| 0|eng d
020 _a9783764389567
_99783764389567
024 7 _a10.1007/9783764389567
_2doi
035 _avtls000363003
039 9 _a201509030651
_bVLOAD
_c201405070338
_dVLOAD
_y201402211137
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA329-329.9
100 1 _aLerer, Leonid.
_eeditor.
_9325198
245 1 0 _aConvolution Equations and Singular Integral Operators :
_bSelected Papers of Israel Gohberg and Georg Heinig Israel Gohberg and Nahum Krupnik /
_cedited by Leonid Lerer, Vadim Olshevsky, Ilya M. Spitkovsky.
264 1 _aBasel :
_bBirkhäuser Basel,
_c2010.
300 _a240 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aOperator Theory: Advances and Applications ;
_v206
500 _aSpringer eBooks
505 0 _aInversion of Finite Toeplitz Matrices -- Inversion of Finite ToeplitzMatrices Consisting of Elements of a Noncommutative Algebra -- Matrix Integral Operators on a Finite Interval with Kernels Depending on the Difference of the Arguments -- The Resultant Matrix and its Generalizations. I. The Resultant Operator for Matrix Polynomials -- The Resultant Matrix and its Generalizations. II. The Continual Analogue of the Resultant Operator -- The Spectrum of Singular Integral Operators in L p Spaces -- On an Algebra Generated by the Toeplitz Matrices in the Spaces h p -- On Singular Integral Equations with Unbounded Coefficients -- Singular Integral Equations with Continuous Coefficients on a Composed Contour -- On a Local Principle and Algebras Generated by Toeplitz Matrices -- The Symbol of Singular Integral Operators on a Composed Contour -- One-dimensional Singular Integral Operators with Shift -- Algebras of Singular Integral Operators with Shift.
520 _aThis volume contains English translations of 13 groundbreaking papers on Toeplitz matrices and Wiener-Hopf equations and other classes of discrete and continuous convolution operators and singular integral equations. The papers are both of theoretical and numerical interest. In particular, the papers examine fast algorithms for inversion of these operators, the theory of discrete and continuous resultants, inversion via factorization, and symbol construction. Originally the papers were written in Russian more than thirty years ago; their English translation is published here for the first time. These papers solved difficult problems and opened new venues in the above-mentioned areas. They are still frequently quoted, and moreover, they exert a continuing influence on numerical analysis and other areas of Pure and Applied Mathematics and Engineering. The book is addressed to a wide audience of mathematicians and engineers, from graduate students to researchers, whose interests lie in the above-mentioned areas.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aOlshevsky, Vadim.
_eeditor.
_9350321
700 1 _aSpitkovsky, Ilya M.
_eeditor.
_9324745
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9783764389550
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-3-7643-8956-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c309943
_d309943